Skip to main content

Wild chimpanzees (Pan troglodytes troglodytes) exploit tortoises (Kinixys erosa) via percussive technology

Wild chimpanzees (Pan troglodytes troglodytes) eat tortoises (Kinixys erosa) after cracking them open against tree trunks. An international team of researchers from the Max Planck Institute for Evolutionary Anthropology in Leipzig and the University of Osnabrück, Germany, have observed wild chimpanzees in the Loango National Park, Gabon, eating tortoises.

They describe the first observations of this potentially cultural behavior where chimpanzees hit tortoises against tree trunks until the tortoises’ shells break open and then feed on the meat.

Dlium Wild chimpanzees (Pan troglodytes troglodytes) exploit tortoises (Kinixys erosa) via percussive technology

"We have known for decades that chimpanzees feed on meat from a variety of animal species, but until now the consumption of reptiles has not been observed," says Tobias Deschner, a primatologist at the Max Planck Institute for Evolutionary Anthropology.

"What is particularly interesting is that they use a percussive technique that they normally employ to open hard-shelled fruits to gain access to meat of an animal that is almost inaccessible for any other predator," Deschner says.

The researchers studied the behaviour of chimpanzees of the newly habituated Rekambo community. They observed 38 prey events by ten different chimpanzees in the dry season, a period when other preferred food such as fruits is abundant.

"Sometimes, younger animals or females were unable to crack open the tortoise on their own. They then regularly handed the tortoise over to a stronger male who cracked the tortoise’s shell open and shared the meat with all other individuals present", says Simone Pika, a cognitive scientist at the University of Osnabrück.

There was one exceptional case in which an adult male, who was on his own, cracked a tortoise, ate half of it up while sitting in a tree and then tucked the rest of it in a tree fork. He climbed down, built his nest in a nearby tree and came back the next morning to retrieve the leftovers and continue to feast on them for breakfast.

"This indicates that chimpanzees may plan for the future. The ability to plan for a future need, such as for instance hunger, has so far only been shown in non-human animals in experimental and/or captive settings," says Pika.



"Many scholars still believe that future-oriented cognition is a uniquely human ability. Our findings thus suggest that even after decades of research, we have not yet grasped the full complexity of chimpanzees’ intelligence and flexibility," Pika says.

"Wild chimpanzee behaviour has been studied now for more than 50 years and at more than ten long-term field sites all across tropical Africa. It is fascinating that we can still discover completely new facets of the behavioural repertoire of this species as soon as we start studying a new population," Deschner adds.

"As one of our closest living relatives, the study of chimpanzee behaviour is a window into our own history and evolution," says Pika.

"To prevent this window from closing once and for all, we need to do whatever we can to secure the survival of these fascinating animals in their natural habitats across Africa," concludes Deschner.

Journal : Simone Pika et al. Wild chimpanzees (Pan troglodytes troglodytes) exploit tortoises (Kinixys erosa) via percussive technology, Scientific Reports, 23 May 2019, DOI:10.1038/s41598-019-43301-8

Popular Posts

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...

Purhepecha oak (Quercus purhepecha), new species of shrub oak endemic to the state of Michoacán, Mexico

NEWS - In Mexico, several Quercus shrubby species are taxonomically very problematic including 8 taxa with similar characteristics. Now researchers report the purhepecha oak ( Quercus purhepecha De Luna-Bonilla, S. Valencia & Coombes sp. nov.) as a new tomentose shrubby white oak species with a distribution only in the Cuitzeo basin in the Trans-Mexican Volcanic Belt (TMVB). Quercus Linnaeus (1753) subdivided into 2 subgenera and 8 sections of which section Quercus (white oaks) has the widest distribution in the Americas, Asia and Europe. This section is very diverse in Mexico and Central America with phylogenomic evidence indicating recent and accelerated speciation in these regions. The number of shrubby oak species in Mexico is still uncertain. De Luna-Bonilla of the Universidad Nacional Autónoma de México and colleagues found at least 3 taxa in the TMVB, specifically Quercus frutex Trelease (1924), Quercus microphylla Née (1801) and Quercus repanda Bonpland (1809). In 2016,...

Cempaki (Termitomyces microcarpus)

Cempaki ( Termitomyces microcarpus ) is a species of fungus in the Lyophyllaceae family. It grows wild in tropical Asian forests near termite nests. It is rarely reported in urban areas. It is edible and known for its deliciousness, high nutritional value, and difficulty in cultivating. In Indonesia, it is used as an alternative food ingredient. T. microcarpus is the smallest of the Termitomyces species, umbrella-shaped, plain white, measuring 5 cm tall and 2.5 cm wide. It grows in dense clusters on surfaces and forms a mutualistic relationship, requiring the metabolic activity of termites as a substrate for growth. This species is known for its deliciousness, rich in nutrients, and has potential bioactive properties, such as helping lower cholesterol and acting as a tonic. Currently, it is difficult to cultivate on a large scale, and people rely solely on wild harvests. This mushroom is highly favored for its savory, delicious flavor and soft, chewy texture. It is often stir-fried ...