Skip to main content

Do zebra stripes influence thermoregulation?

Zebras' stripes are used to control body temperature after all and reveals for the first time a new mechanism for how this may be achieved, new research published in the Journal of Natural History.

The authors argue it is the special way zebras sweat to cool down and the small-scale convection currents created between the stripes which aid evaporation, while the previously unrecorded ability of zebras to erect their black stripes is a further aid to heat loss.

Dlium Do zebra stripes influence thermoregulation

These three elements are key to understanding how the zebras' unique patterning helps them manage their temperature in the heat. The findings by amateur naturalist and former biology technician, Alison Cobb and her zoologist husband, Dr. Stephen Cobb. Together, they have spent many years in sub-Saharan Africa, where he has directed environmental research and development projects.

This study is the first-time zebras have been assessed in their natural habitat to investigate the role of stripes in temperature control. The researchers collected field data from two live zebras, a stallion and a mare, together with a zebra hide draped over a clothes-horse as a control, in Kenya.

The data revealed a temperature difference between the black and white stripes that increases as the day heats up. Whilst this difference stabilises on living zebras during the middle seven hours of the day, with the black stripes 12-15C hotter than the white, the stripes on a lifeless zebra hide continue to heat up, by as much as another 16C.

This indicates there is an underlying mechanism to suppress heating in living zebras. It is therefore the way the zebra stripes are harnessed as one part of their cooling system, rather than just their contrasting coat colour, that is key to understanding why these animals have their unique patterning.

Like all species in the horse family, zebras sweat to keep cool. Recent research reveals that the passage of sweat in horses from the skin to the tips of the hairs is facilitated by a protein called latherin which is also present in zebras. This makes the sweat frothy, increasing its surface area and lowering its surface tension so it evaporates and prevents the animal overheating.

The researchers propose that the differential temperatures and air activity on the black and white stripes set up small-scale convective air movements within and just above the stripes, which destabilise the air and the water vapour at the tips of the hairs.

During the field research, the authors also observed, probably for the first time, that zebras have an unexpected ability to raise the hair on their black stripes (like velvet) while the white ones remain flat.

The authors propose that the raising of black hairs during the heat of the day, when the stripes are at different temperatures, assists with the transfer of heat from the skin to the hair surface and conversely, when the stripes are at the same temperature in the early morning, and there is no air movement, the raised black hairs will help trap air to reduce heat loss at that time.

These three components, convective air movements, latherin-aided sweating and hair-raising, work together as a mechanism to enable zebras to wick the sweat away from their skin so it can evaporate more efficiently, to help them cool down.

The authors also speculate that the unstable air associated with the stripes may play a secondary role in deterring biting flies from landing on them. This insect behaviour has been observed in recently published studies about zebra stripes and could confer an additional advantage for zebras.

There is evidence from other recent studies that backs up the idea that heat control may be key to why zebras have their striking coats. It has been demonstrated that the zebra stripes become remarkably more pronounced on animals living in the hottest climates, near the equator. Zebras are also smallest near the equator, providing a large surface area to volume ratio which assists the animals' ability to dissipate heat through evaporation.

"Ever since I read 'How the Leopard Got His Spots' in Kipling's Just So Stories at bedtime when I was about four, I have wondered what zebra stripes are for. In the many years we spent living in Africa, we were always struck by how much time zebras spent grazing in the blazing heat of the day and felt the stripes might be helping them to control their temperature in some way," says Alison Cobb.

"My early attempts forty years ago at testing this hypothesis involved comparing the temperatures of water in oil drums with differently coloured felt coats, but it seemed to me that this was not a good enough experiment, and I wanted to see how the stripes behaved on live zebras," Cobb says.

"Steve, the man who later became my husband and co-author, teaching conservation biology in the University of Nairobi, had a student working with zebras, who said he could calm them down in their crush by brushing them with a long-handled broom."

"This gave me courage in 1991 to ask permission to go into the Animal Orphanage in Nairobi National Park to see if I could tame one of the wild zebras in the paddock by brushing it with a dandy brush."

"Apart from its capture, it had never been touched by a human. To my immense pleasure it found this tickling very agreeable and as the days went by it gradually allowed me to brush it all over."

"Two years later I came back to Nairobi and walked into the paddock with the brush. The same zebra mare lifted her head, looked at me hard, and walked up to me to be brushed again."

"It was not until years later that we got the opportunity to collect some field data from zebras in Africa, when we also noticed their ability to raise the hairs of their black stripes, while the white ones lay flat. It was only much more recently, when the role of latherin was discovered in helping horses sweat to keep cool, that it all began to fall into place."

"The solution to the zebra's heat-balance challenge is cleverer, more complex and beautiful than we'd imagined. Of course, there is much more work to be done to gather evidence and fully understand how the stripes help zebras control temperature, but I am 85 now, so that's for others to do."

Journal : Alison Cobb & Stephen Cobb. Do zebra stripes influence thermoregulation? Journal of Natural History, 13 Jun 2019, DOI:10.1080/00222933.2019.1607600

Popular Posts

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...

False nettle (Boehmeria cylindrica)

False nettle ( Boehmeria cylindrica ) is a species of plant in the Urticaceae family, a herb or small shrub, up to 160 cm tall, usually monoecious but rarely dioecious. The leaves are paired or alternate, and the inflorescence is a spikelet with a cluster of small bracts at the tip. B. cylindrica generally grows to a height of 50-100 cm. Spine-like hairs form in the leaf axils. The leaves are oval and up to 10 cm long and 4 cm wide. The flowers are green or greenish-white and emerge from the upper leaf axils. Male and female flowers usually grow on separate plants. Male flowers are more numerous among the spikes in clusters. Female flowers are less evenly distributed along the spikes. The small, oval seeds are covered with small, hook-like hairs. Ripe seeds are dark brown. The inflorescence resembles a spike and is up to 3 cm long. This species can be found in moist to mesic deciduous forest habitats, growing abundantly along streambanks, floodplains, and lowlands. B. cylindrica is ...

Alexandrian Laurel (Calophyllum inophyllum)

Alexandrian Laurel ( Calophyllum inophyllum ) is a species of plant in the Calophyllaceae family. It is a low-branching, slow-growing, spreading tree with a wide, irregular crown. It grows up to 30 meters tall, has a cylindrical trunk, and thick, black, and fissured bark. The leaves are thick, oval, with rounded tips, even margins, and a smooth surface. The upper side is dark green and glossy, the underside is bright green, with a central vein in bright green. The leaves are up to 27 cm long, 13 cm wide, and have a 1 cm petiole. Flowers bloom throughout the year, but typically from April to June and October to December. Flowers are 30 mm in diameter and occur in racemose or paniculate inflorescences of four to 15 flowers. The flowers have a sweet aroma and attract numerous pollinating insects. The fruit is round, green, up to 4 cm in diameter, with a large seed in the center. When ripe, the fruit wrinkles and turns yellow to brownish. The fruit is light, with thin, spongy flesh and a...