Skip to main content

Do zebra stripes influence thermoregulation?

Zebras' stripes are used to control body temperature after all and reveals for the first time a new mechanism for how this may be achieved, new research published in the Journal of Natural History.

The authors argue it is the special way zebras sweat to cool down and the small-scale convection currents created between the stripes which aid evaporation, while the previously unrecorded ability of zebras to erect their black stripes is a further aid to heat loss.

Dlium Do zebra stripes influence thermoregulation

These three elements are key to understanding how the zebras' unique patterning helps them manage their temperature in the heat. The findings by amateur naturalist and former biology technician, Alison Cobb and her zoologist husband, Dr. Stephen Cobb. Together, they have spent many years in sub-Saharan Africa, where he has directed environmental research and development projects.

This study is the first-time zebras have been assessed in their natural habitat to investigate the role of stripes in temperature control. The researchers collected field data from two live zebras, a stallion and a mare, together with a zebra hide draped over a clothes-horse as a control, in Kenya.

The data revealed a temperature difference between the black and white stripes that increases as the day heats up. Whilst this difference stabilises on living zebras during the middle seven hours of the day, with the black stripes 12-15C hotter than the white, the stripes on a lifeless zebra hide continue to heat up, by as much as another 16C.

This indicates there is an underlying mechanism to suppress heating in living zebras. It is therefore the way the zebra stripes are harnessed as one part of their cooling system, rather than just their contrasting coat colour, that is key to understanding why these animals have their unique patterning.

Like all species in the horse family, zebras sweat to keep cool. Recent research reveals that the passage of sweat in horses from the skin to the tips of the hairs is facilitated by a protein called latherin which is also present in zebras. This makes the sweat frothy, increasing its surface area and lowering its surface tension so it evaporates and prevents the animal overheating.

The researchers propose that the differential temperatures and air activity on the black and white stripes set up small-scale convective air movements within and just above the stripes, which destabilise the air and the water vapour at the tips of the hairs.

During the field research, the authors also observed, probably for the first time, that zebras have an unexpected ability to raise the hair on their black stripes (like velvet) while the white ones remain flat.

The authors propose that the raising of black hairs during the heat of the day, when the stripes are at different temperatures, assists with the transfer of heat from the skin to the hair surface and conversely, when the stripes are at the same temperature in the early morning, and there is no air movement, the raised black hairs will help trap air to reduce heat loss at that time.

These three components, convective air movements, latherin-aided sweating and hair-raising, work together as a mechanism to enable zebras to wick the sweat away from their skin so it can evaporate more efficiently, to help them cool down.

The authors also speculate that the unstable air associated with the stripes may play a secondary role in deterring biting flies from landing on them. This insect behaviour has been observed in recently published studies about zebra stripes and could confer an additional advantage for zebras.

There is evidence from other recent studies that backs up the idea that heat control may be key to why zebras have their striking coats. It has been demonstrated that the zebra stripes become remarkably more pronounced on animals living in the hottest climates, near the equator. Zebras are also smallest near the equator, providing a large surface area to volume ratio which assists the animals' ability to dissipate heat through evaporation.

"Ever since I read 'How the Leopard Got His Spots' in Kipling's Just So Stories at bedtime when I was about four, I have wondered what zebra stripes are for. In the many years we spent living in Africa, we were always struck by how much time zebras spent grazing in the blazing heat of the day and felt the stripes might be helping them to control their temperature in some way," says Alison Cobb.

"My early attempts forty years ago at testing this hypothesis involved comparing the temperatures of water in oil drums with differently coloured felt coats, but it seemed to me that this was not a good enough experiment, and I wanted to see how the stripes behaved on live zebras," Cobb says.

"Steve, the man who later became my husband and co-author, teaching conservation biology in the University of Nairobi, had a student working with zebras, who said he could calm them down in their crush by brushing them with a long-handled broom."

"This gave me courage in 1991 to ask permission to go into the Animal Orphanage in Nairobi National Park to see if I could tame one of the wild zebras in the paddock by brushing it with a dandy brush."

"Apart from its capture, it had never been touched by a human. To my immense pleasure it found this tickling very agreeable and as the days went by it gradually allowed me to brush it all over."

"Two years later I came back to Nairobi and walked into the paddock with the brush. The same zebra mare lifted her head, looked at me hard, and walked up to me to be brushed again."

"It was not until years later that we got the opportunity to collect some field data from zebras in Africa, when we also noticed their ability to raise the hairs of their black stripes, while the white ones lay flat. It was only much more recently, when the role of latherin was discovered in helping horses sweat to keep cool, that it all began to fall into place."

"The solution to the zebra's heat-balance challenge is cleverer, more complex and beautiful than we'd imagined. Of course, there is much more work to be done to gather evidence and fully understand how the stripes help zebras control temperature, but I am 85 now, so that's for others to do."

Journal : Alison Cobb & Stephen Cobb. Do zebra stripes influence thermoregulation? Journal of Natural History, 13 Jun 2019, DOI:10.1080/00222933.2019.1607600

Comments

Popular

Salak (Salacca zalacca)

Salak or snake fruit (Salacca zalacca) is a species of palm plant in Arecaceae, dioesis, shrubs and not trunked, has many thorns, many shoots, grows into dense and strong clumps, spreads below or above the ground, often branching and 10-15 cm diameter.

S. zalacca has compound leaves, pinnate and 3-7 m long. Petiole, midrib and sapling have many long thorns, thin spines and a blackish-gray color. Minor leaves have a lanceolate shape, a pointed tip, 8x85 cm and a white underside by a waxy coating.


The flowers in the cob are compound, appear in the armpit of the leaf, stem, initially covered by a sheath then dry and break down like fibers. Male flowers 50-100 cm long, 4-12 cylindrical items, 7-15 cm long, reddish in the armpits of tightly arranged scales. Female flowers 20-30 cm long, stemmed long and 1-3 items.

The fruit has scaly skin, is eaten and is known as a table fruit, triangular shaped rather rounded or inverted ovoid, pointed at the base and rounded at the tip, 2.5-10 cm long, w…

God is tools

God and spirit are controversial discussions in science and even mythology will have no place among naturalists and for Darwinians. Apparently this has been final that mythology is a delusional, mystical and superstitious concept that cannot be empirically proven in the world of science.

Most scientists and science activists have agreed that god is nonsense, delusional and cannot be accommodated in the theory of evolution. This opinion can be understood methodologically and I agree with the sentences. But so many behaviors are very real and occur in the field.


I am a fieldman who goes to the wild every day, along rice fields and forests to watch insects to plants, talk to people especially in villages, visit Hindu-Buddhist temples built in the 8th century, witnessing busyness in mosques, temples and churches.

I feel something is missing in the view of naturalists and Darwinians. There are short moments that are missed in analyzes in the timeline of human evolution. These little moment…

Devil's backbone (Euphorbia tithymaloides)

Pokok lipan or devil's-backbone or redbird flower or christmas candle or Pedilanthus tithymaloides (Euphorbia tithymaloides) are plant species in Euphorbiaceae, upright, evergreen, gummy shrubs, growing in tropical and subtropical regions.

E. tithymaloides likes sandy soils especially with high concentrations of boron, copper, iron, manganese, molybdenum and zinc. This bush grows to 2.4 m high and 61 cm wide. Simple angiosperm leaves, arranged opposite to the stem where each leaf is sessile with a length of 3.6-7.6 cm.


The stem has the tip of a handle that supports a group of flowers that are not scented. Bifid crown and ovoid. The involucral bracts are bright red, irregular in shape and length from 1.1 to 1.3 mm.

Hairy male and female pedicels. Seed pods are 7.6 mm long, 8.9 mm wide and ovate with clipped ends. Devil's-backbone generally blooms in mid-spring in the subtropical region and in the dry season in the tropics. Pollination is carried out by ants and birds.

Redbird fl…

Barbados lily (Hippeastrum puniceum)

Barbados lily or amaryllis lily (Hippeastrum puniceum) is a species of perennial flowering plant in Amaryllidaceae, grows in the tropics, has 4-6 leaves, bright green, 30-60 cm long and 2.5-3 cm wide, white waxed, tubular and shrink at the ends.

H. puniceum has flowers that grow in the umbel at the end of the stalk which has a height of 40-60 cm and stands tall with a pointed tip at the top. The umbel has lanceolate green bracts at its base. Each stalk has one or two ovaries.


Orange-red petal with yellow or pale base. The two lower tepals are much narrower than lateral. About five white stamens emerge from the end of the tube in the middle of the crown.

A single flower will bloom to face north or south with a curved base where the horizontal flower faces are parallel to the ground, while the stems that have two flowers will bloom to face north and others to the south.

Wild barbados lilies grow in forests, yard, roadside and neglected lands. This plant likes sandy, gravel and rocky soil…

Temulawak (Curcuma zanthorrhiza)

Temulawak or Java ginger or Javanese ginger or Javanese turmeric or Curcuma xanthorrhiza (Curcuma zanthorrhiza) is a plant species in Zingiberaceae, grows well in loose soil in tropical forests in the lowlands to an altitude of 1500 meters above sea level and tubers are used for medicinal herbs and drinks.

C. zanthorrhiza has pseudo stems up to 2 m tall. The stem is a midrib of upright, overlapping leaves, green or dark brown in color. Rhizomes are perfectly formed, large, branched and reddish brown, dark yellow or dark green.


Each bud forms 2-9 leaves with a circular shape extending to lancet, green or light purple to dark brown, leaves 31-84 cm long and 10-18 cm wide, stems 43-80 cm long and each strand is connected with a midrib.

Flowers are dark yellow, uniquely shaped and clustered with lateral inflorescences. The stems and scales are in the form of lines, 9-23cm long and 4-6cm wide, having protectors with comparable crowns. Petals are white, hairy and 8-13mm long.

The crown is tu…