Skip to main content

Molecular basis for branched steviol glucoside biosynthesis in Stevia rebaudiana

New research reveals the molecular machinery behind the high-intensity sweetness of Stevia rebaudiana. The results could be used to engineer new non-caloric products without the aftertaste that many associate with sweetener marketed as Stevia.

Although the genes and proteins in the biochemical pathway responsible for stevia synthesis are almost completely known, this is the first time that the three-dimensional structure of the proteins that make rebaudioside A or 'RebA,' the major ingredient in the product Stevia, has been published, according to the researchers of a new paper in the Proceedings of the National Academy of Sciences.

Dlium Molecular basis for branched steviol glucoside biosynthesis in Stevia rebaudiana

"If someone is diabetic or obese and needs to remove sugar from their diet, they can turn to artificial sweeteners made from chemical synthesis (aspartame, saccharin, etc), but all of these have 'off-tastes' not associated with sugar, and some have their own health issues," said Joseph Jez of the Washington University in St. Louis.

"Stevias and their related molecules occur naturally in plants and are more than 200 times sweeter than sugar. They've been consumed for centuries in Central and South America, and are safe for consumers," Jez said.

"Many major food and beverage companies are looking ahead and aiming to reduce sugar/calories in various projects over the next few years in response to consumer demands worldwide," he said.

Researchers determined the structure of the RebA protein by X-ray crystallography. Their analysis shows how RebA is synthesized by a key plant enzyme and how the chemical structure needed for that high-intensity sweetness is built biochemically.

To make something 200 times sweeter than a single glucose molecule, the plant enzyme decorates a core terpene scaffold with three special sugars. That extra-sweet taste from the stevia plant comes with an unwanted flavor downside, however.

"For me, the sweetness of Stevia comes with an aftertaste of licked aluminum foil. The taste is particular to the predominant molecules in the plant leaf: the stevioside and RebA. It is their chemical structure that hits the taste receptors on the tongue that trigger 'sweet,' but they also hit other taste receptors that trigger the other tastes," Jez said.

"RebA is abundant in the stevia plant and was the first product made from the plant because it was easy to purify in bulk. Call this 'Stevia 1.0'. But in the leaf are other related compounds with different structures that hit the 'sweet' without the aftertaste. Those are 'Stevia 2.0,' and they will be big," said Jez.

Many consumers experience this slightly metallic aftertaste. There are many ways that the newly published protein structure information could be used to help improve sweeteners.

"One could use the snapshot of the protein that makes RebA to guide protein engineering efforts to tailor the types and/or pattern of sugars in the stevias. This could be used to explore the chemical space between 'sweet' and 'yuck'," Jez said.

"There are also molecules in other plants that are not 'stevias' but can deliver intense sweetness. We could use the information of how the stevia plant does it as a way of finding those details," he said.

Journal : Soon Goo Lee et al. Molecular basis for branched steviol glucoside biosynthesis, PNAS, June 10, 2019, DOI:10.1073/pnas.1902104116

Popular Posts

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...

Pink trumpet tree (Tabebuia heterophylla)

Pink trumpet tree ( Tabebuia heterophylla ) is a species of plant in the Bignoniaceae family, growing 6–9 meters tall with a cylindrical trunk and brown bark that is often linearly fissured. The leaves are opposite, compound, with five or fewer minor leaflets. T. heterophylla has striking bright red flowers, tubular, five-lobed, and 5–7.5 cm long. The fruit is a cylindrical pod, up to 20 cm long and up to 1 cm wide. The pod stalk is up to 3 cm long. The pod splits along two lines to release numerous thin, light brown seeds, 0.5–2.5 cm long with two white wings. This species is often used as a street tree and shade tree for residential properties. Kingdom: Plantae Phylum: Tracheophyta Subphylum: Angiospermae Class: Magnoliopsida Order: Lamiales Family: Bignoniaceae Genus: Tabebuia Species: Tabebuia heterophylla

Asian palmyra palm (Borassus flabellifer)

Asian palmyra palm ( Borassus flabellifer ) is a species of Arecaceae , palm, sturdy, single-stemmed, cylindrical shape, growing 15-30 meters tall and with a trunk diameter of about 60 cm. The leaves are clustered at the tip of the trunk, forming a rounded crown . The leaf blade resembles a round fan , up to 1.5 meters in diameter. The leaflets are 5-7 cm wide, and the underside is whitish with a waxy coating. The leaf stalk is up to 1 meter long, with a broad, black midrib at the top and a row of two-pointed spines . The inflorescence is borne on a cob, 20-30 cm long, and the stalk is about 50 cm long. The fruits are clustered in clusters of about 20, round, 7-20 cm in diameter, with a brownish-black outer skin and yellow flesh on the inside. The fruit has three seeds in a thick, hard shell. Kingdom: Plantae Phylum: Tracheophyta Subphylum: Angiospermae Class: Liliopsida Order: Arecales Family: Arecaceae Subfamily: Coryphoideae Tribe: Borasseae Subtribe: Lataniinae Genu...