Skip to main content

Molecular basis for branched steviol glucoside biosynthesis in Stevia rebaudiana

New research reveals the molecular machinery behind the high-intensity sweetness of Stevia rebaudiana. The results could be used to engineer new non-caloric products without the aftertaste that many associate with sweetener marketed as Stevia.

Although the genes and proteins in the biochemical pathway responsible for stevia synthesis are almost completely known, this is the first time that the three-dimensional structure of the proteins that make rebaudioside A or 'RebA,' the major ingredient in the product Stevia, has been published, according to the researchers of a new paper in the Proceedings of the National Academy of Sciences.

Dlium Molecular basis for branched steviol glucoside biosynthesis in Stevia rebaudiana

"If someone is diabetic or obese and needs to remove sugar from their diet, they can turn to artificial sweeteners made from chemical synthesis (aspartame, saccharin, etc), but all of these have 'off-tastes' not associated with sugar, and some have their own health issues," said Joseph Jez of the Washington University in St. Louis.

"Stevias and their related molecules occur naturally in plants and are more than 200 times sweeter than sugar. They've been consumed for centuries in Central and South America, and are safe for consumers," Jez said.

"Many major food and beverage companies are looking ahead and aiming to reduce sugar/calories in various projects over the next few years in response to consumer demands worldwide," he said.

Researchers determined the structure of the RebA protein by X-ray crystallography. Their analysis shows how RebA is synthesized by a key plant enzyme and how the chemical structure needed for that high-intensity sweetness is built biochemically.

To make something 200 times sweeter than a single glucose molecule, the plant enzyme decorates a core terpene scaffold with three special sugars. That extra-sweet taste from the stevia plant comes with an unwanted flavor downside, however.

"For me, the sweetness of Stevia comes with an aftertaste of licked aluminum foil. The taste is particular to the predominant molecules in the plant leaf: the stevioside and RebA. It is their chemical structure that hits the taste receptors on the tongue that trigger 'sweet,' but they also hit other taste receptors that trigger the other tastes," Jez said.

"RebA is abundant in the stevia plant and was the first product made from the plant because it was easy to purify in bulk. Call this 'Stevia 1.0'. But in the leaf are other related compounds with different structures that hit the 'sweet' without the aftertaste. Those are 'Stevia 2.0,' and they will be big," said Jez.

Many consumers experience this slightly metallic aftertaste. There are many ways that the newly published protein structure information could be used to help improve sweeteners.

"One could use the snapshot of the protein that makes RebA to guide protein engineering efforts to tailor the types and/or pattern of sugars in the stevias. This could be used to explore the chemical space between 'sweet' and 'yuck'," Jez said.

"There are also molecules in other plants that are not 'stevias' but can deliver intense sweetness. We could use the information of how the stevia plant does it as a way of finding those details," he said.

Journal : Soon Goo Lee et al. Molecular basis for branched steviol glucoside biosynthesis, PNAS, June 10, 2019, DOI:10.1073/pnas.1902104116

Comments

Popular

Guinea grass (Panicum maximum)

Guinea grass or buffalo grass or green panic ( Panicum maximum ) is a plant species in Poaceae, annual grasses, growing upright to form clumps, strong, cultivated in all tropical and subtropical regions for very high value as fodder. P. maximum reproduces in very large pols, fibrous roots penetrate into the soil, upright stems, green, 1-1.5 m tall and have smooth cavities for diameters up to 2.5 mm. Propagation is done vegetatively and generatively. Ribbon-shaped leaves with a pointed tip, very many, built in lines, green, 40-105 cm long, 10-30 mm wide, erect, branched, a white linear bone, often covered with a layer of white wax, rough surface by hair short, dense and spread. The flower grows at the end of a long and upright stalk, open with the main axis length to more than 25 cm and the length of the bunches down to 20 cm. Grains have a size of 3x4 mm and oval. Seeds have a length of 2.25-2.50 mm and each 1 kg contains 1.2 - 1.5 million seeds. Guinea grass has two varieties. P

Temulawak (Curcuma zanthorrhiza)

Temulawak or Java ginger or Javanese ginger or Javanese turmeric or Curcuma xanthorrhiza ( Curcuma zanthorrhiza ) is a plant species in Zingiberaceae, grows well in loose soil in tropical forests in the lowlands to an altitude of 1500 meters above sea level and tubers are used for medicinal herbs and drinks. C. zanthorrhiza has pseudo stems up to 2 m tall. The stem is a midrib of upright, overlapping leaves, green or dark brown in color. Rhizomes are perfectly formed, large, branched and reddish brown, dark yellow or dark green. Each bud forms 2-9 leaves with a circular shape extending to lancet, green or light purple to dark brown, leaves 31-84 cm long and 10-18 cm wide, stems 43-80 cm long and each strand is connected with a midrib. Flowers are dark yellow, uniquely shaped and clustered with lateral inflorescences. The stems and scales are in the form of lines, 9-23cm long and 4-6cm wide, having protectors with comparable crowns. Petals are white, hairy and 8-13mm long. The

Giant green leech (Raksasa hijau)

Lintah raksasa or giant green leech ( Raksasa hijau ) is a species of animal in Salifidae, large green leeches, carnivores, not hematophagic, can grow to lengths of more than 50 cm, the front is perfectly tubular, but it is getting bigger, wider and flat backward. R. hijau has a front end that ends with a white mouth and has a width equal to the diameter of the front end of the body. The rear end ends with the anus and has a width equal to the diameter of the rear end of the body. The upper surface is whole dark green or leafy green, looks shiny and has no other additional color features. The bottom surface is lighter or brownish green. The skin is wrinkled like tight, elastic joints that make it possible to lengthen the body. Giant green leech moves forward by extending the tip of the front of the body to keep the new location farther away and this movement is then followed by the middle body and gradually the rear where the body moves completely. R. hijau does not suck blo