Skip to main content

Symbolic representation of numerosity by honeybees (Apis mellifera)

Bees can understand zero and do basic math, and now a new study shows their tiny insect brains may be capable of connecting symbols to numbers. Researchers have trained honeybees to match a character to a specific quantity, revealing they are able to learn that a symbol represents a numerical amount.

It's a finding that sheds new light on how numerical abilities may have evolved over millennia and even opens new possibilities for communication between humans and other species. The discovery also points to new approaches for bio-inspired computing that can replicate the brain's highly efficient approach to processing.

Dlium Symbolic representation of numerosity by honeybees (Apis mellifera)

The RMIT University-led study is published in the Proceedings of the Royal Society B. Adrian Dyer said while humans were the only species to have developed systems to represent numbers, like the Arabic numerals we use each day, the research shows the concept can be grasped by brains far smaller than ours.

"We take it for granted once we've learned our numbers as children, but being able to recognise what '4' represents actually requires a sophisticated level of cognitive ability. Studies have shown primates and birds can also learn to link symbols with numbers, but this is the first time we've seen this in insects," Dyer said.

"Humans have over 86 billion neurons in our brains, bees have less than a million, and we're separated by over 600 million years of evolution. But if bees have the capacity to learn something as complex as a human-made symbolic language, this opens up exciting new pathways for future communication across species," said Dyer.

Studies have shown that a number of non-human animals have been able to learn that symbols can represent numbers, including pigeons, parrots, chimpanzees and monkeys. Some of their feats have been impressive—chimpanzees were taught Arabic numbers and could order them correctly, while an African grey parrot called Alex was able to learn the names of numbers and could sum the quantities.

The new study for the first time shows that this complex cognitive capacity is not restricted to vertebrates. In a Y-shaped maze, individual bees were trained to correctly match a character with a number of elements.

They were then tested on whether they could apply their new knowledge to match the character to various elements of the same quantity (in the same way that '2' can represent two bananas, two trees or two hats). A second group was trained in the opposite approach, matching a number of elements with a character.

While both could grasp their specific training, the different groups were unable to reverse the association and work out what to do when tested with the opposite (character-to-number or number-to-character).

"This suggests that number processing and understanding of symbols happens in different regions in bee brains, similar to the way separate processing happens in the human brain," said Scarlett Howard, formerly a Ph.D. researcher in the Bio Inspired Digital Sensing-Lab (BIDS-Lab) at RMIT and now a fellow at the Research Center on Animal Cognition, University of Toulouse III—Paul Sabatier, CNRS.

"Our results show honeybees are not at the same level as the animals that have been able to learn symbols as numbers and perform complex tasks. But the results have implications for what we know about learning, reversing tasks, and how the brain creates connections and associations between concepts," Howard said.

Discovering how such complex numerical skills can be grasped by miniature brains will help us understand how mathematical and cultural thinking evolved in humans, and possibly, other animals. Studying insect brains offers intriguing possibilities for the future design of highly efficient computing systems, Dyer said.

"When we're looking for solutions to complex problems, we often find that nature has already done the job far more elegantly and efficiently. Understanding how tiny bee brains manage information opens paths to bio-inspired solutions that use a fraction of the power of conventional processing systems," Dyer said.

Journal : Scarlett R. Howard et al. Symbolic representation of numerosity by honeybees (Apis mellifera): matching characters to small quantities, Proceedings of the Royal Society B, 05 June 2019, DOI:10.1098/rspb.2019.0238

Popular Posts

Sandbox tree (Hura crepitans)

Sandbox tree ( Hura crepitans ) is species in Euphorbiaceae, a tropical tree, growing up to 60 meters tall and with a trunk circumference of up to 13.2 meters, the trunk is covered with long and sharp thorns and exudes a poisonous sap. H. crepitans has large, oval leaves, 15 cm wide and 20 cm long. The petioles are 22 cm long. The flowers are red and lack petals. Male flowers grow on long stalks, while female flowers grow singly in leaf axils. The fruit is a large, flask-shaped capsule, up to 10 cm in diameter, with 12-16 radially arranged carpels. The seeds are flat and about 2 cm in diameter. The capsule bursts when ripe, dividing into segments and ejecting the seeds at a speed of 70 m/s, a distance of 30-100 meters. This tree prefers moist soil and partial shade or partial to full sun, a warm, humid environment. It is often cultivated for shade. The wood is light and used to make canoes. The sap is used to poison fish. Kingdom: Plantae Phylum: Tracheophyta Subphylum: Angiosperma...

Fivefingers (Syngonium angustatum)

Donglimo or fivefingers ( Syngonium angustatum ) is species in Araceae, epiphytes, grow to climb large trees up to 20 meters high, produce milky sap, dark green, internodes up to 50 cm long, petioles up to 35 cm long, green and live in areas tropical. S. angustatum has roots in the soil to absorb nutrients and air roots that grow in each segment to attach themselves to a support. Wild plants that live in forests often cause trees to be uprooted by heavy loads. The main stem produces a row of stems, up to 60 cm with the ends of a group of leaves with 3-7 separate leaflets, but connected by horizontal stems. The middle leaf has a length of up to 25 cm and a width of up to 12 cm. The flower has a veil, round in shape and a pointed tip, green and facing up with a stalk up to 15 cm long. The head of the pistil is tubular, stands 3-5 cm long and is white. The fruit is in a veil, rounded with a pointed tip and green when young to turn bright red when ripe and grow on the tip of the ...

Bitter melon (Momordica charantia)

Pare or bitter melon ( Momordica charantia ) is a plant species in Cucurbitaceae, grows climbing or spreads with spiral-shaped tendrils, many branches, long fruit and jagged surface, grows well in tropical regions and is usually cultivated for vegetables and medicinal ingredients. M. charantia has green stems with white hairs. Single leaf stemmed and arranged alternately, length 3.5-8.5 cm, width 4 cm, divided into 5-7 fins with many bones, heart-shaped base, green, wrinkled surface and jagged margins. A single flower has a stalk, male and female flowers in the tree, the crown has five fins and is yellow. The fruit is long oval shaped, has 8-10 linear ribs, irregular nodules, 6-30 cm long depending on subspecies and varieties, bitter taste, young green, ripe to orange and broken with three parts. Bitter melon has several subpsecies including Momordica charantia macroloba , Momordica charantia charantia and Momordica charantia abbreviata . Some varieties include Momordica charantia ...