Skip to main content

Symbolic representation of numerosity by honeybees (Apis mellifera)

Bees can understand zero and do basic math, and now a new study shows their tiny insect brains may be capable of connecting symbols to numbers. Researchers have trained honeybees to match a character to a specific quantity, revealing they are able to learn that a symbol represents a numerical amount.

It's a finding that sheds new light on how numerical abilities may have evolved over millennia and even opens new possibilities for communication between humans and other species. The discovery also points to new approaches for bio-inspired computing that can replicate the brain's highly efficient approach to processing.

Dlium Symbolic representation of numerosity by honeybees (Apis mellifera)

The RMIT University-led study is published in the Proceedings of the Royal Society B. Adrian Dyer said while humans were the only species to have developed systems to represent numbers, like the Arabic numerals we use each day, the research shows the concept can be grasped by brains far smaller than ours.

"We take it for granted once we've learned our numbers as children, but being able to recognise what '4' represents actually requires a sophisticated level of cognitive ability. Studies have shown primates and birds can also learn to link symbols with numbers, but this is the first time we've seen this in insects," Dyer said.

"Humans have over 86 billion neurons in our brains, bees have less than a million, and we're separated by over 600 million years of evolution. But if bees have the capacity to learn something as complex as a human-made symbolic language, this opens up exciting new pathways for future communication across species," said Dyer.

Studies have shown that a number of non-human animals have been able to learn that symbols can represent numbers, including pigeons, parrots, chimpanzees and monkeys. Some of their feats have been impressive—chimpanzees were taught Arabic numbers and could order them correctly, while an African grey parrot called Alex was able to learn the names of numbers and could sum the quantities.

The new study for the first time shows that this complex cognitive capacity is not restricted to vertebrates. In a Y-shaped maze, individual bees were trained to correctly match a character with a number of elements.

They were then tested on whether they could apply their new knowledge to match the character to various elements of the same quantity (in the same way that '2' can represent two bananas, two trees or two hats). A second group was trained in the opposite approach, matching a number of elements with a character.

While both could grasp their specific training, the different groups were unable to reverse the association and work out what to do when tested with the opposite (character-to-number or number-to-character).

"This suggests that number processing and understanding of symbols happens in different regions in bee brains, similar to the way separate processing happens in the human brain," said Scarlett Howard, formerly a Ph.D. researcher in the Bio Inspired Digital Sensing-Lab (BIDS-Lab) at RMIT and now a fellow at the Research Center on Animal Cognition, University of Toulouse III—Paul Sabatier, CNRS.

"Our results show honeybees are not at the same level as the animals that have been able to learn symbols as numbers and perform complex tasks. But the results have implications for what we know about learning, reversing tasks, and how the brain creates connections and associations between concepts," Howard said.

Discovering how such complex numerical skills can be grasped by miniature brains will help us understand how mathematical and cultural thinking evolved in humans, and possibly, other animals. Studying insect brains offers intriguing possibilities for the future design of highly efficient computing systems, Dyer said.

"When we're looking for solutions to complex problems, we often find that nature has already done the job far more elegantly and efficiently. Understanding how tiny bee brains manage information opens paths to bio-inspired solutions that use a fraction of the power of conventional processing systems," Dyer said.

Journal : Scarlett R. Howard et al. Symbolic representation of numerosity by honeybees (Apis mellifera): matching characters to small quantities, Proceedings of the Royal Society B, 05 June 2019, DOI:10.1098/rspb.2019.0238

Popular Posts

Molucca albizia (Falcataria moluccana)

Sengon laut or Molucca albizia ( Falcataria moluccana ) is a species of wood-producing trees in Fabaceae, claimed to have the fastest growth in the world with the addition of a height of 7 m/year, producing white light wood for light construction, packing crates, particle boards and blockboards. F. moluccana has a height of 40 m and a diameter of 100 cm or more, the main stem is generally straight and cylindrical with clear bole up to 20 m. The bark is gray or whitish, smooth or slightly warted with a line of lenticels. Shady canopy, umbrella-shaped and tenuous. Young twigs have sides and hair. Double pinnate compound leaves, small minor leaves, easily fall out with one or more glands on the stem and length 23-30 cm. Leaf fins number 6-20 pairs, each containing 6-26 pairs of elliptical or elongated minor leaves with a very tilted, pointed tip, 0.6-1.8x0.5 cm. Small flowers, yellowish white, hairy, androgynous, collected in branched panicles, 10-25 cm long and located in the arm...

Six new species forming the Sumbana species group in genus Nemophora Hoffmannsegg 1798 from Indonesia

NEWS - Sumbawa longhorn ( Nemophora sumbana Kozlov, sp. nov.), Timor longhorn ( Nemophora timorella Kozlov, sp. nov.), shining shade longhorn ( Nemophora umbronitidella Kozlov, sp. nov.), Wegner longhorn ( Nemophora wegneri Kozlov, sp. nov.), long brush longhorn ( Nemophora longipeniculella Kozlov, sp. nov.), and short brush longhorn ( Nemophora brevipeniculella Kozlov, sp. nov.) from the Lesser Sunda Islands in Indonesia. The Lesser Sunda Islands consist of two parallel, linear oceanic island chains, including Bali, Lombok, Sumbawa, Flores, Sumba, Sawu, Timor, Alor, and Tanimbar. The oldest of these islands have been continuously occurring for 10–12 million years. This long period of isolation has allowed significant in situ diversification, making the Lesser Sundas home to many endemic species. This island chain may act as a two-way filter for organisms migrating between the world's two great biogeographic regions, Asia and Australia-Papua. The recognition of a striking cli...

Banded dragonfish (Akarotaxis gouldae) diverged from Akarotaxis nudiceps 780,000 years ago

NEWS - A new species of dragonfish, Akarotaxis gouldae or banded dragonfish, off the western Antarctic Peninsula by researchers at the Virginia Institute of Marine Science at Gloucester Point, the University of Oregon at Eugene, and the University of Illinois at Urbana-Champaign, highlights the unknown biodiversity and fragile ecosystems of the Antarctic. A. gouldae was named in honor of the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould and crew. The larval specimen was collected while trawling for zooplankton and was initially thought to be the closely related Akarotaxis nudiceps hundreds of thousands of years ago. DNA comparisons with A. nudiceps specimens held in collections at the Virginia Institute of Marine Science, Yale University, and the Muséum national d’Histoire naturelle in Paris showed significant variation in mitochondrial genes that suggested the larval sample was a distinct species. Andrew Corso of the Virginia Institute of Marine Science and colle...