Skip to main content

Symbolic representation of numerosity by honeybees (Apis mellifera)

Bees can understand zero and do basic math, and now a new study shows their tiny insect brains may be capable of connecting symbols to numbers. Researchers have trained honeybees to match a character to a specific quantity, revealing they are able to learn that a symbol represents a numerical amount.

It's a finding that sheds new light on how numerical abilities may have evolved over millennia and even opens new possibilities for communication between humans and other species. The discovery also points to new approaches for bio-inspired computing that can replicate the brain's highly efficient approach to processing.

Dlium Symbolic representation of numerosity by honeybees (Apis mellifera)

The RMIT University-led study is published in the Proceedings of the Royal Society B. Adrian Dyer said while humans were the only species to have developed systems to represent numbers, like the Arabic numerals we use each day, the research shows the concept can be grasped by brains far smaller than ours.

"We take it for granted once we've learned our numbers as children, but being able to recognise what '4' represents actually requires a sophisticated level of cognitive ability. Studies have shown primates and birds can also learn to link symbols with numbers, but this is the first time we've seen this in insects," Dyer said.

"Humans have over 86 billion neurons in our brains, bees have less than a million, and we're separated by over 600 million years of evolution. But if bees have the capacity to learn something as complex as a human-made symbolic language, this opens up exciting new pathways for future communication across species," said Dyer.

Studies have shown that a number of non-human animals have been able to learn that symbols can represent numbers, including pigeons, parrots, chimpanzees and monkeys. Some of their feats have been impressive—chimpanzees were taught Arabic numbers and could order them correctly, while an African grey parrot called Alex was able to learn the names of numbers and could sum the quantities.

The new study for the first time shows that this complex cognitive capacity is not restricted to vertebrates. In a Y-shaped maze, individual bees were trained to correctly match a character with a number of elements.

They were then tested on whether they could apply their new knowledge to match the character to various elements of the same quantity (in the same way that '2' can represent two bananas, two trees or two hats). A second group was trained in the opposite approach, matching a number of elements with a character.

While both could grasp their specific training, the different groups were unable to reverse the association and work out what to do when tested with the opposite (character-to-number or number-to-character).

"This suggests that number processing and understanding of symbols happens in different regions in bee brains, similar to the way separate processing happens in the human brain," said Scarlett Howard, formerly a Ph.D. researcher in the Bio Inspired Digital Sensing-Lab (BIDS-Lab) at RMIT and now a fellow at the Research Center on Animal Cognition, University of Toulouse III—Paul Sabatier, CNRS.

"Our results show honeybees are not at the same level as the animals that have been able to learn symbols as numbers and perform complex tasks. But the results have implications for what we know about learning, reversing tasks, and how the brain creates connections and associations between concepts," Howard said.

Discovering how such complex numerical skills can be grasped by miniature brains will help us understand how mathematical and cultural thinking evolved in humans, and possibly, other animals. Studying insect brains offers intriguing possibilities for the future design of highly efficient computing systems, Dyer said.

"When we're looking for solutions to complex problems, we often find that nature has already done the job far more elegantly and efficiently. Understanding how tiny bee brains manage information opens paths to bio-inspired solutions that use a fraction of the power of conventional processing systems," Dyer said.

Journal : Scarlett R. Howard et al. Symbolic representation of numerosity by honeybees (Apis mellifera): matching characters to small quantities, Proceedings of the Royal Society B, 05 June 2019, DOI:10.1098/rspb.2019.0238

Comments

Popular

Indian rosewood (Dalbergia latifolia)

Sonokeling or Java palisandre or Indian rosewood ( Dalbergia latifolia ) is a species of plant in the Fabaceae, a large tree producing hardwood, medium weight and high quality, rounded leaves, thin and broad pods, highly adaptive, grows in dry and rocky landscapes with lots of sunlight. D. latifolia has medium to large size, cylindrical stems, up to 40 m high with a ring of up to 2 m, the bark is brownish gray and slightly cracked longitudinally. The crown is dense, dome-shaped and sheds leaves. The leaves are compound and pinnate oddly with 5-7 strands that have different sizes and appear alternately on the shaft. The leaves are round or elongated in width or heart, the upper surface is green and the surface is pale green. The flowers are small, 0.5-1 cm long and clustered in panicles. The pods are green to brown when ripe and are elongated lanceolate, pointed at the base and tip. The pods have 1-4 seeds which are soft and brownish. Indian rosewood grows at elevations below 600 m,

Sengiran (Pittosporum moluccanum)

Sengiran ( Pittosporum moluccanum ) is a species of plant in the Pittosporaceae, small tree, up to 7 meters high, green leaves, elliptical to narrow elliptical, up to 17 cm long, up to 6 cm wide, sharp tip, narrow base and 1-1.5 cm long stalk. P. moluccanum has an inflorescence which is a collection of flowers. The fruit is red, capsule-shaped, elongated oval, sharp tip, 2 broken valves containing small and red seeds. This species grows in forests, plantations, roadsides, open or shaded areas. Kingdom: Plantae Phylum: Tracheophyta Subphylum: Angiospermae Class: Magnoliopsida Order: Apiales Family: Pittosporaceae Genus: Pittosporum Species: Pittosporum moluccanum

Sugarcane (Saccharum officinarum)

Tebu or sugarcane ( Saccharum officinarum ) is a plant species in Poaceae, a large grass that grows strong, a sturdy stalk, rich in sucrose as a simple sugar that accumulates in the stem segment and is widely cultivated in the tropics for the production of sugar, ethanol and others. S. officinarum has tall and broad stems, has no branches, grows upright, 3-5 meters high or more, has a waxy coating that is grayish white, especially on young stems. Each segment has a border where the leaves grow and has a bud which is commonly called the "budding eye". Incomplete leaves consisting only of strands and midribs, sitting at the base of the segment, long strands of 1-2 meters long, 4-7 cm wide and pointed end. The midrib grows elongated and covers the vertebrae, attached to the stem in an intermittent sitting position and protects the buds. Root fibers grow at the base of the stem, 0.5-1 meters long and only the tips of young roots have hairs to absorb nutrients. Sugarcane grows