Skip to main content


Japanese stiltgrass (Microstegium vimineum)

Japanese stiltgrass (Microstegium vimineum) is a plant species in Poaceae, annual grasses in various habitats and adapts well to low light levels, 0.2-1.1 m long, grows using soft stems and droops with segments where roots can grow in each segment connection.

M. vimineum has pale green leaves, alternating, spear-shaped, 2.5-7.6 cm long, asymmetrical with a shiny midrib, haired or not haired, the surface of the upper and lower leaves is slightly pubescent and has a silvery line on in the middle.

Dlium Japanese stiltgrass (Microstegium vimineum)

Flowers grow on the axillary leaves or at the top of the stems and produce fruit for about 30 days later. Plants produce seeds in the form of caryopsis. Japanese stiltgrass closes to storm the forest floor until it becomes a dense carpet. They also grow in ditches, forest edges, fields and footpaths.

M. vimineum is very adaptable in situations under large trees and can completely replace native vegetation. They reproduce vegetatively and generatively to colonize new territories on agricultural lands and abandoned lands.



Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Clade: Commelinids
Order: Poales
Family: Poaceae
Genus: Microstegium
Species: M. vimineum

Popular Posts

A deep-sea isopod Bathyopsurus nybelini adapted to feed submerged Sargassum algae

NEWS - Incredible footage shows a marine species, Bathyopsurus nybelini , feeding on something that sinks from the ocean’s surface. Researchers using the submersible Alvin found the isopod swimming 3.7 miles down using its paddle-like legs to catch an unexpected food source: Sargassum. Researchers from Woods Hole Oceanographic Institution (WHOI), the University of Montana, SUNY Geneseo, Willamette University and the University of Rhode Island found the algae sinking, while the isopod waited and adapted specifically to find and feed on the sinking nutrient source. The Sargassum lives on the surface for photosynthesis. The discovery of a deep-sea animal that relies on food that sinks from the waters miles above underscores the close relationship between the surface and the deep. “It’s fascinating to see this beautiful animal actively interacting with sargassum, so deep in the ocean. This isopod is extremely rare; only a handful of specimens were collected during the groundbreaking Swedis

Ngamugawi wirnagarri reveals evolution of coelacanth fish and history of life on earth

NEWS - An ancient Devonian coelacanth has been remarkably well preserved in a remote location in Western Australia linked to increased tectonic activity. An international team of researchers analysed fossils of the primitive fish from the Gogo Formation of Ngamugawi wirngarri , which straddles a key transition period in the history of coelacanths, between the most primitive and more modern forms. The new fish species adds to the evidence for Earth’s evolutionary journey. Climate change, asteroid strikes and plate tectonics are all key subjects in the origins and extinctions of animals that played a major role in evolution. Is the world’s oldest ‘living fossil’ the coelacanth still evolving? “We found that plate tectonic activity had a major influence on the rate of coelacanth evolution. New species are more likely to have evolved during periods of increased tectonic activity when new habitats were divided and created,” says Alice Clement of Flinders University in Adelaide. The Late Dev

Integrative taxonomy reveals presence a new species West African mane jelly (Cyanea altafissura)

NEWS - A new species of Cyanea is described from samples collected in the Gulf of Guinea during 2017-2019. The species is a member of the nozakii group that has discontinuous radial septa and is characterized by, among other things, deeper rhopalial than velar marginal clefts, uniform papillose exumbrella, up to 200 tentacles per cluster and a dense network of anastomosing canals in a broad quadrate fold. West African mane jelly ( Cyanea altafissura ) can be genetically distinguished from relatives in the ITS1 and COI regions as confirmed by several phylogenies and other analyses. This is the first record of a member of the nozakii group in the Atlantic Ocean and the first description of a genus Cyanea from the west coast of Africa and the tropical Atlantic Ocean. Cyanea PĂ©ron & Lesueur (1810) currently includes 17 species and is the second largest number of valid and recognized species in the Semaeostomeae of Agassiz (1862), after Aurelia Lamarck (1816). Both genera are rarely re