Skip to main content
Search specimens, taxon records etc. Learn more »


Coralbush (Jatropha multifida)

Jarak tinkir or coralbush (Jatropha multifida) is a plant species in Euphorbiaceae, a shrub with gummy stems, grows wild in forests and agricultural land, is widely used as an ornamental plant and has medicinal properties used to treat wounds as an anti-infection.

J. multifida grows up to 3 meters, stems erect, thick, has branches, the surface has traces of stalk marks, green bark when young and dark brown bark, thin with a green inner layer when old.

Dlium Coralbush (Jatropha multifida)


The leaves have long, tubular stalks, are green or yellow in color and grow piled at the top of the stem arranged in a circle. The petiole ends at a leaf that extends to form an umbrella.

The leaf blade consists of 7-11 fingers formed by a bone in the center with several lateral veins. The fingers have a large tooth on the side or not, a pointed tip, the upper surface is dark green, the lower surface is light green.

The flowers grow in panicles at the end of the stem, have long and erect stalks. The flowers are branched and red with yellow tips. The fruit, growing in the center of the flower, is round with several angles, is green and ripe is bright yellow in color.

Coralbush is widely used in the medical field, especially to treat wounds as an antimicrobial and hemostatic compound by flavonoids and tannins. The sap cream with a concentration of 10% can speed up the healing process of a cut infected with Staphylococcus aureus.





Kingdom: Plantae
Phylum: Tracheophyta
Subphylum: Angiospermae
Class: Magnoliopsida
Order: Malpighiales
Family: Euphorbiaceae
Genus: Jatropha
Species: Jatropha multifida

Popular Posts

A deep-sea isopod Bathyopsurus nybelini adapted to feed submerged Sargassum algae

NEWS - Incredible footage shows a marine species, Bathyopsurus nybelini , feeding on something that sinks from the ocean’s surface. Researchers using the submersible Alvin found the isopod swimming 3.7 miles down using its paddle-like legs to catch an unexpected food source: Sargassum. Researchers from Woods Hole Oceanographic Institution (WHOI), the University of Montana, SUNY Geneseo, Willamette University and the University of Rhode Island found the algae sinking, while the isopod waited and adapted specifically to find and feed on the sinking nutrient source. The Sargassum lives on the surface for photosynthesis. The discovery of a deep-sea animal that relies on food that sinks from the waters miles above underscores the close relationship between the surface and the deep. “It’s fascinating to see this beautiful animal actively interacting with sargassum, so deep in the ocean. This isopod is extremely rare; only a handful of specimens were collected during the groundbreaking Swedis

Ngamugawi wirnagarri reveals evolution of coelacanth fish and history of life on earth

NEWS - An ancient Devonian coelacanth has been remarkably well preserved in a remote location in Western Australia linked to increased tectonic activity. An international team of researchers analysed fossils of the primitive fish from the Gogo Formation of Ngamugawi wirngarri , which straddles a key transition period in the history of coelacanths, between the most primitive and more modern forms. The new fish species adds to the evidence for Earth’s evolutionary journey. Climate change, asteroid strikes and plate tectonics are all key subjects in the origins and extinctions of animals that played a major role in evolution. Is the world’s oldest ‘living fossil’ the coelacanth still evolving? “We found that plate tectonic activity had a major influence on the rate of coelacanth evolution. New species are more likely to have evolved during periods of increased tectonic activity when new habitats were divided and created,” says Alice Clement of Flinders University in Adelaide. The Late Dev

Species going extinct every day and without warning

NEWS - The current rate of human-caused extinction is up to 700 times higher than it was in the past. Extinctions are no different for plants, animals and fungi, although the extinctions of botanicals and invertebrates have been far worse than those of vertebrates. The mass extinctions increased from 1890 to 1940, but a decline in extinctions was only recorded after the 1980s, likely due to taxonomic bottlenecks and the pre-1800 extinction rates being affected by a lack of data. The number of species varies from 2-8 million to 1 trillion, and estimates suggest that most species, especially microbes and fungi that may be key to healthy ecosystems, are still undiscovered. The biodiversity crisis is therefore extremely difficult to measure. “If we don’t know what we have, it’s impossible to measure how much we’re losing. This taxonomic gap urgently needs to be addressed,” say Maarten Christenhusz and RafaĆ«l Govaerts of the Royal Botanic Gardens, Kew. Yet taxonomy is in decline. Misunderst