Skip to main content
Search specimens, taxon records etc. Learn more »


Trivi stilt-legged (Taeniaptera trivittata)

Trivi stilt-legged flies (Taeniaptera trivittata) is an animal species in the Micropezidae, winged insects with very long stick-shaped legs, predominantly dark in color with brown and white, live arboreal on foliage in low, shady, low shrubs near water.

T. trivittata has a black head with a pair of large dark eyes. The back has several curves and is black. The waist is tubular, narrow and black. The stomach is cylindrical, black and jointed with a light or shiny color.

Dlium Trivi stilt-legged (Taeniaptera trivittata)


A pair of simple wings are elongated and have a vein, rounded tips, transparent and three horizontal black plots that alternate from the tip, stacked to completely cover the upper part of the stomach at rest.

The legs are stick-shaped and very long as a characteristic of Micropezidae. The forelegs are black and dark brown with white tips. The middle pair of legs have a black and dark brown color with white soles. The hind legs are black and dark brown with white tips.

Trivi stilt-legged flies arboreal and spend much of their time in broad foliage, low shady shrubs and near water in forests, farmlands, roadsides and abandoned places.



Kingdom: Animalia
Phylum: Arthropoda
Subphylum: Hexapoda
Class: Insecta
Subclass: Pterygota
Order: Diptera
Suborder: Brachycera
Infraorder: Cyclorrhapha
Zoosection: Schizophora
Zoosubsection: Acalyptratae
Superfamily: Nerioidea
Family: Micropezidae
Subfamily: Taeniapterinae
Genus: Taeniaptera
Species: Taeniaptera trivittata

Popular Posts

A deep-sea isopod Bathyopsurus nybelini adapted to feed submerged Sargassum algae

NEWS - Incredible footage shows a marine species, Bathyopsurus nybelini , feeding on something that sinks from the ocean’s surface. Researchers using the submersible Alvin found the isopod swimming 3.7 miles down using its paddle-like legs to catch an unexpected food source: Sargassum. Researchers from Woods Hole Oceanographic Institution (WHOI), the University of Montana, SUNY Geneseo, Willamette University and the University of Rhode Island found the algae sinking, while the isopod waited and adapted specifically to find and feed on the sinking nutrient source. The Sargassum lives on the surface for photosynthesis. The discovery of a deep-sea animal that relies on food that sinks from the waters miles above underscores the close relationship between the surface and the deep. “It’s fascinating to see this beautiful animal actively interacting with sargassum, so deep in the ocean. This isopod is extremely rare; only a handful of specimens were collected during the groundbreaking Swedis

Ngamugawi wirnagarri reveals evolution of coelacanth fish and history of life on earth

NEWS - An ancient Devonian coelacanth has been remarkably well preserved in a remote location in Western Australia linked to increased tectonic activity. An international team of researchers analysed fossils of the primitive fish from the Gogo Formation of Ngamugawi wirngarri , which straddles a key transition period in the history of coelacanths, between the most primitive and more modern forms. The new fish species adds to the evidence for Earth’s evolutionary journey. Climate change, asteroid strikes and plate tectonics are all key subjects in the origins and extinctions of animals that played a major role in evolution. Is the world’s oldest ‘living fossil’ the coelacanth still evolving? “We found that plate tectonic activity had a major influence on the rate of coelacanth evolution. New species are more likely to have evolved during periods of increased tectonic activity when new habitats were divided and created,” says Alice Clement of Flinders University in Adelaide. The Late Dev

Species going extinct every day and without warning

NEWS - The current rate of human-caused extinction is up to 700 times higher than it was in the past. Extinctions are no different for plants, animals and fungi, although the extinctions of botanicals and invertebrates have been far worse than those of vertebrates. The mass extinctions increased from 1890 to 1940, but a decline in extinctions was only recorded after the 1980s, likely due to taxonomic bottlenecks and the pre-1800 extinction rates being affected by a lack of data. The number of species varies from 2-8 million to 1 trillion, and estimates suggest that most species, especially microbes and fungi that may be key to healthy ecosystems, are still undiscovered. The biodiversity crisis is therefore extremely difficult to measure. “If we don’t know what we have, it’s impossible to measure how much we’re losing. This taxonomic gap urgently needs to be addressed,” say Maarten Christenhusz and RafaĆ«l Govaerts of the Royal Botanic Gardens, Kew. Yet taxonomy is in decline. Misunderst