Skip to main content

Moyo indigo (Indigofera zollingeriana)

Moyo indigo (Indigofera zollingeriana) is a plant species in Fabaceae, annual shrub, growing wide, horizontal stems, cylindrical in shape, green stems with brown stripes and spots, green young twigs, grows in open forest, agricultural land, roadsides and abandoned lands.

I. zollingeriana has green leaves with horizontal stalks. Each strand is ovoid or elongated with a rounded or tapered base and tip, green in color, a main vein in the middle.

Dlium Moyo indigo (Indigofera zollingeriana)


Inflorescences in upright panicles. The flowers are arranged on long, erect stalks and the crown is reddish. The pistil extends beyond the crown. The pods are tubular and elongated.

Moyo indigo grows at an elevation of 0-2200 meters and rainfall of 600-3000 mm/year. Growth rate, biomass production and nutrient content are greater when compared to other leguminous species in the same soil and climate.

Seeds as a source of seed throughout the year regardless of the season, tolerant of dry weather, salinity, alkaline and acid soils. Widely used as a quality feed crop and a solution to overcome limitations for dry climates.



Kingdom: Plantae
Phylum: Tracheophyta
Subphylum: Angiospermae
Class: Magnoliopsida
Order: Fabales
Family: Fabaceae
Subfamily: Faboideae
Tribe: Indigofereae
Genus: Indigofera
Species: Indigofera zollingeriana

Popular Posts

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...

Red costate tiger moth (Aloa lactinea)

Red costate tiger moth ( Aloa lactinea ) is an animal species in the Erebidae, a moth with a wingspan of 40 mm, a yellow belly, black antennae with red basalt joints, dark red palpi on the sides and white below, black terminal joints, living in forests and agriculture in the lowlands to mountainous areas. A. lactinea has a white head with a red stripe on the back. Thorax is white. The wings are predominantly white in color with black dots on each corner of the cells and a red margin. The wings have branched pulse lines and a starchy surface. The wing-covered upper abdomen is black with large elliptical plots and is colored yellow forming cells. The lower abdomen is white and has fine hairs that fall out easily. A pair of antennas is black. The forelegs are red, white and black. The other legs are white on the top and black on the bottom. The final joints are white and black which form alternating rings. Tip and sole black all over. The larvae are black in color with a lateral crest ...

Takenoshin Nakai swallow-wort (Vincetoxicum nakaianum) replaces V. magnificum and C. magnificum

NEWS - Researchers reported an erect herbaceous species distributed in the eastern part of Honshu Island, Vincetoxicum magnificum (Nakai) Kitag. based on Cynanchum magnificum Nakai, nomen nudum. Therefore, they named this species Takenoshin Nakai swallow-wort ( Vincetoxicum nakaianum K.Mochizuki & Ohi-Toma). Vincetoxicum Wolf (Asclepiadeae) is the third largest genus in the Asclepiadoideae consisting of about 260 species geographically extending from tropical Africa, Asia and Oceania to temperate regions of Eurasia. A total of 23 species are known from Japan, including 16 endemic species. Molecular phylogeny divides Japanese Vincetoxicum into four groups: the “Far Eastern” clade consisting of 11 endemic species and 4 more widespread species, 1 sister species to the “Far Eastern” clade, the “subtropical” clade consisting of 2 species and the “Vincetoxicum s. str.” clade consisting of 5 species. V. magnificum (Nakai) Kitag. (Japanese: tachi-gashiwa) is closely related to V. macro...