Skip to main content

Bonobo (Pan paniscus) moderate out-group threats while maintaining in-group cohesion

NEWS - “Your enemy is our enemy” is a motto as old as the existence of animals on earth, and new research suggests it first occurred in big primates at least 5-6 million years ago. A perceived out-group threat can increase in-group cohesion.

Bonobos (Pan paniscus) moderate out-group threats while maintaining in-group cohesion

Scientists have long known the mechanisms that increase in-group cohesion in societies shaped by out-group threat. However, the distribution and selection history of this association with intergroup relationships have varied across species.

In the face of threat from other groups, humans (Homo sapiens), chimpanzees (Pan troglodytes), and a number of other species draw closer together in their own groups. Since Charles Darwin, the link between out-group threat and in-group cohesion has been thought to be an adaptation to group-based competition.

Over the years, studies ranging from chimpanzees to mongooses have found evidence to support this view, but the crucial question remains: what about species without strong inter-group competition?

James Brooks of Kyoto University and an international team set up an experiment that closely mirrors previous studies in chimpanzees, using a sample of eight groups (N = 43 individuals) to test whether bonobos (Pan paniscus), which are notoriously peaceful, exhibit more affiliative in-group behavior following distant vocalizations from unfamiliar males.

"Without lethal intragroup competition, the link between in-group cohesion and out-group competition would not be adaptive, but if the effect predates the human-chimpanzee-bonobo evolutionary divergence, then it may still have traces in modern bonobos," Brooks says.

Bonobos were alert and attentive to vocalizations from other groups, but showed little increase in affiliation with their own group compared to chimpanzees. Bonobos sat upright more and rested less, with little reinforcement of social bonds.

The pan-Homo ancestors that lived 5-6 million years ago may have experienced group-based conflict, but as its intensity declined in bonobo evolutionary history, its effects became less intense and it was overcome, not just at the individual level but at the species level.

All ape species including gorillas, orangutans, chimpanzees, gibbons and humans have been observed killing each other in the wild. Bonobos may have found a way to end the pattern, not just to stop the lethal aggression, but more importantly, at some point in the last few million years, to somehow stop it.

"Humans are capable of both. We can do terrible things to people we perceive as outgroups, but we are also capable of collaborating and cooperating across boundaries," says Shinya Yamamoto of Kyoto University.

Bonobos show that how our ancestors treated other groups did not determine the fate of our descendants. Our species shares elements of both chimpanzee and bonobo group relationships. Yamamoto says it is important to understand how both have evolved.

Original research

Brooks J, van Heijst K, Epping A, Lee SH, Niksarli A, Pope A, et al. (2024) Increased alertness and moderate ingroup cohesion in bonobos’ response to outgroup cues. PLoS ONE 19(8): e0307975. DOI:10.1371/journal.pone.0307975

Popular Posts

Laniger bat tick (Ixodes lanigeri), new hard tick species (Ixodidae) from mouse-eared bats (Myotis) in Vietnam

NEWS - Researchers have identified Ixodes ticks from Vietnam based on morphological and molecular characteristics of females, nymphs and larvae as a new species, laniger bat tick ( Ixodes lanigeri ), which like other members of the Ixodes ariadnae complex appears to show a preference for vesper bats as a typical host. Historically, for more than a century and a half, only one species has been called the “long-legged bat tick”: Ixodes vespertilionis Koch. However, over the past decade, it has been molecularly recognized that long-legged ixodid ticks associated with bats may represent at least six species. Host associations and geographic separation may explain the evolutionary divergence of the new species from its closest living relative Murina hilgendorfi Peters in East Asia, Japan, as no Myotis or Murina spp. have overlapping distributions between Vietnam and the Japanese mainland. On the other hand, assuming that I. lanigeri may be present in other myotine bats and knowing that s...

Purhepecha oak (Quercus purhepecha), new species of shrub oak endemic to the state of Michoacán, Mexico

NEWS - In Mexico, several Quercus shrubby species are taxonomically very problematic including 8 taxa with similar characteristics. Now researchers report the purhepecha oak ( Quercus purhepecha De Luna-Bonilla, S. Valencia & Coombes sp. nov.) as a new tomentose shrubby white oak species with a distribution only in the Cuitzeo basin in the Trans-Mexican Volcanic Belt (TMVB). Quercus Linnaeus (1753) subdivided into 2 subgenera and 8 sections of which section Quercus (white oaks) has the widest distribution in the Americas, Asia and Europe. This section is very diverse in Mexico and Central America with phylogenomic evidence indicating recent and accelerated speciation in these regions. The number of shrubby oak species in Mexico is still uncertain. De Luna-Bonilla of the Universidad Nacional Autónoma de México and colleagues found at least 3 taxa in the TMVB, specifically Quercus frutex Trelease (1924), Quercus microphylla Née (1801) and Quercus repanda Bonpland (1809). In 2016,...

Pundak scoliid (Scolia clypeata)

Pundak scoliid ( Scolia clypeata ) is an animal species in Scoliidae, arboreal insects, elongated body, blackish blue wings, round head, long legs, spending time perched on leaves in the shade in the bush, medium-sized trees in the forest and agricultural land. S. clypeata has a round, red head and a pair of large black eyes on the face. A pair of large antennae, red, jointed, black base and blunt tip. The neck is narrow and black. The back is dark brown and rough. The front shoulders on the right and left sides have a red plot color. The stomach is cylindrical, elongated, with long hair, droplet-shaped tips and shiny black color. A pair of elongated wings with multiple veins, rounded tips, blackish blue and shiny, piled together to cover the entire abdomen at rest. The legs are several joints and have long hair. Pundak scoliid live in forests or agricultural fields, spending much of their time perched on leaves in low shrubs or medium-sized trees, in shade and more solitary. King...