Skip to main content


Bonobo (Pan paniscus) moderate out-group threats while maintaining in-group cohesion

NEWS - “Your enemy is our enemy” is a motto as old as the existence of animals on earth, and new research suggests it first occurred in big primates at least 5-6 million years ago. A perceived out-group threat can increase in-group cohesion.

Bonobos (Pan paniscus) moderate out-group threats while maintaining in-group cohesion

Scientists have long known the mechanisms that increase in-group cohesion in societies shaped by out-group threat. However, the distribution and selection history of this association with intergroup relationships have varied across species.

In the face of threat from other groups, humans (Homo sapiens), chimpanzees (Pan troglodytes), and a number of other species draw closer together in their own groups. Since Charles Darwin, the link between out-group threat and in-group cohesion has been thought to be an adaptation to group-based competition.

Over the years, studies ranging from chimpanzees to mongooses have found evidence to support this view, but the crucial question remains: what about species without strong inter-group competition?

James Brooks of Kyoto University and an international team set up an experiment that closely mirrors previous studies in chimpanzees, using a sample of eight groups (N = 43 individuals) to test whether bonobos (Pan paniscus), which are notoriously peaceful, exhibit more affiliative in-group behavior following distant vocalizations from unfamiliar males.

"Without lethal intragroup competition, the link between in-group cohesion and out-group competition would not be adaptive, but if the effect predates the human-chimpanzee-bonobo evolutionary divergence, then it may still have traces in modern bonobos," Brooks says.

Bonobos were alert and attentive to vocalizations from other groups, but showed little increase in affiliation with their own group compared to chimpanzees. Bonobos sat upright more and rested less, with little reinforcement of social bonds.

The pan-Homo ancestors that lived 5-6 million years ago may have experienced group-based conflict, but as its intensity declined in bonobo evolutionary history, its effects became less intense and it was overcome, not just at the individual level but at the species level.

All ape species including gorillas, orangutans, chimpanzees, gibbons and humans have been observed killing each other in the wild. Bonobos may have found a way to end the pattern, not just to stop the lethal aggression, but more importantly, at some point in the last few million years, to somehow stop it.

"Humans are capable of both. We can do terrible things to people we perceive as outgroups, but we are also capable of collaborating and cooperating across boundaries," says Shinya Yamamoto of Kyoto University.

Bonobos show that how our ancestors treated other groups did not determine the fate of our descendants. Our species shares elements of both chimpanzee and bonobo group relationships. Yamamoto says it is important to understand how both have evolved.

Original research

Brooks J, van Heijst K, Epping A, Lee SH, Niksarli A, Pope A, et al. (2024) Increased alertness and moderate ingroup cohesion in bonobos’ response to outgroup cues. PLoS ONE 19(8): e0307975. DOI:10.1371/journal.pone.0307975

Popular Posts

Thomas Sutikna lives with Homo floresiensis

BLOG - On October 28, 2004, a paper was published in Nature describing the dwarf hominin we know today as Homo floresiensis that has shocked the world. The report changed the geographical landscape of early humans that previously stated that the Pleistocene Asia was only represented by two species, Homo erectus and Homo sapiens . The report titled "A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia" written by Peter Brown and Mike J. Morwood from the University of New England with Thomas Sutikna, Raden Pandji Soejono, Jatmiko, E. Wahyu Saptomo and Rokus Awe Due from the National Archaeology Research Institute (ARKENAS), Indonesia, presents more diversity in the genus Homo. “Immediately, my fever vanished. I couldn’t sleep well that night. I couldn’t wait for sunrise. In the early morning we went to the site, and when we arrived in the cave, I didn’t say a thing because both my mind and heart couldn’t handle this incredible moment. I just went down

Elephant bell gourd (Trichosanthes tricuspidata)

Elephant bell gourd ( Trichosanthes tricuspidata ) is a plant species in the Cucurbitaceae, stems grow elongated to propagate or climb, many branches, cylindrical in shape and green in color. T. cochinchinensis has stem tips or branches that twist to attach themselves to a support or other plant. It grows to climb to cover a support, usually on another plant, up to several meters and creeps along the ground to reach another support. Arrow-shaped leaves, split base, sharp apex and two wings at an acute angle, have many veins ending at a sharp edge, green and have a long petiole. Single flower is white. The fruit is round to oval, ends with a tail, young green and turns red with maturity, thin skin, thick flesh and reddish yellow, has a short stalk and hangs. The seeds are in the middle of the fruit. Seeds are white, oval and flat. Black coated seeds. Elephant bell gourd grows wild in primary and secondary forests, agricultural land, roadsides, watersheds, especially on slopes, damp a

Yellow fever mosquito (Aedes aegypti) use thermal infrared to navigate hosts

NEWS - Aedes aegypti transmits the viruses that cause dengue, yellow fever, Zika and other diseases every year, while Anopheles gambiae transmits the parasite that causes malaria. Their capacity to transmit disease has made mosquitoes the deadliest animals. Moreover, climate change and global travel have expanded the range of A. aegypti beyond tropical geography. The mosquitoes are now present in subtropical climates that were previously unheard of just a few years ago. Male mosquitoes are harmless, but females need blood for egg development. There is no single cue that these insects rely on to feed; they integrate information from many different senses across a wide range of distances. " A. aegypti very adept at finding human hosts. This work provides a new insight into how they achieve this. Once we got all the right parameters, the results were clear and undeniable," says Nicolas DeBeaubien of the University of California at Santa Barbara UCSB. The researchers added

Nactus simakal, gecko evolved in geomorphological habitat of Dauan Island

NEWS - Researchers report a new species of Nactus simakal that lives in a boulder-strewn habitat with deep crevices on Dauan Island in the northern Torres Strait. The Torres Strait Islands lie between Cape York Peninsula, north-eastern Australia, and the southern coast of Papua New Guinea and are rare in gecko biodiversity. The vertebrate fauna of the islands is a mix of Australian and New Guinean species with only two endemic species described to date. Conrad Hoskin of James Cook University in Townsville and colleagues describe the new species as highly distinctive based on ND2 mtDNA genetics and morphologically on its slender, elongated striped pattern. N. simakal is broadly similar to Nactus galgajuga (Ingram, 1978) which is restricted to a boulder-strewn habitat about 750 km to the south in mainland north-eastern Queensland, but is easily distinguished morphologically and genetically from saxicolines. N. simakal is the second vertebrate species to be described and considered