Skip to main content

Mycobacterium spongiae in marine sponge provides insights into evolution and virulence of tubercle bacilli

NEWS - Researchers have described the bacterium Mycobacterium spongiae found in marine sponges collected near Cooktown, Queensland. The team from the Peter Doherty Institute for Infection and Immunity at the University of Melbourne reports the microbe could provide new insights into the evolution of pathogenic bacteria.

Mycobacterium spongiae in marine sponge provides insights into evolution and virulence of tubercle bacilli

The surprising discovery of bacteria in marine sponges from the Great Barrier Reef that closely resemble Mycobacterium tuberculosis, the pathogen responsible for tuberculosis (TB), could unlock future TB treatment strategies.

Sea sponges, often referred to as “chemical factories”, are a valuable source of bioactive compounds with anticancer, antibacterial, antiviral and anti-inflammatory properties. The researchers discovered the puzzling bacteria while studying sponge specimens for the bacteria that produce the chemicals.

The team carried out extensive analysis of the genes, proteins and lipids of M. spongiae (strain ID: FSD4b-SM). They found the bacteria shared 80% of their genetic material with M. tuberculosis, including several key genes associated with their ability to cause disease.

"We were very surprised to find that this bacterium is a close relative of M. tuberculosis," said Sacha Pidot from the Doherty Institute.

Tuberculosis is one of the world's deadliest infectious diseases, but the origins of M. tuberculosis are still poorly understood. Now the University of Melbourne team has found that M. spongiae does not cause disease in mice, meaning it is not virulent.

"This discovery provides new insights into the evolution of M. tuberculosis, suggesting that this pathogen may have originated from marine mycobacteria. This new knowledge is an important foundation for future research," said Timothy Stinear from the Doherty Institute.

"While there is still much work to be done, this discovery is an important part of understanding how TB became such a serious disease. Our findings could help to identify the link to M. tuberculosis for the development of new strategies such as vaccines to prevent tuberculosis," Stinear said.

Mycobacterium was first officially described by Lehmann & Neumann (1896) in the Atlas und Grundriss der Bacteriologie und Lehrbuch der Speziellen bakteriologischen Diagnostik. To date there are more than 190 officially recorded species.

Original research

Pidot SJ, Klatt S, Ates LS, Frigui W, Sayes F, Majlessi L, et al. (2024) Marine sponge microbe provides insights into evolution and virulence of the tubercle bacillus. PLOS Pathogens 20(8): e1012440. DOI:10.1371/journal.ppat.1012440

Popular Posts

Redflower ragleaf (Crassocephalum crepidioides)

Sintrong or ebolo or thickhead or redflower ragleaf ( Crassocephalum crepidioides ) are plant species in Asteraceae, terma height 25-100 cm, white fibrous roots, generally grow wild on the roadside, yard gardens or abandoned lands at altitude 200- 2500 m. C. crepidioides has erect or horizontal stems along the soil surface, vascular, soft, non-woody, shallow grooves, green, rough surface and short white hair, aromatic fragrance when squeezed. Petiole is spread on stems, tubular and eared. Single leaf, spread out, green, 8-20 cm long, 3-6 cm wide, longitudinal or round inverted eggshell with a narrow base along the stalk. Pointed tip, flat-edged or curved to pinnate, jagged rough and pointed. The top leaves are smaller and often sit. Compound flowers grow throughout the year in humps that are arranged in terminal flat panicles and androgynous. Green cuffs with orange-brown to brick-red tips, cylindrical for 13-16 mm long and 5-6 mm wide. The crown is yellow with a brownish red...

Six new species forming the Sumbana species group in genus Nemophora Hoffmannsegg 1798 from Indonesia

NEWS - Sumbawa longhorn ( Nemophora sumbana Kozlov, sp. nov.), Timor longhorn ( Nemophora timorella Kozlov, sp. nov.), shining shade longhorn ( Nemophora umbronitidella Kozlov, sp. nov.), Wegner longhorn ( Nemophora wegneri Kozlov, sp. nov.), long brush longhorn ( Nemophora longipeniculella Kozlov, sp. nov.), and short brush longhorn ( Nemophora brevipeniculella Kozlov, sp. nov.) from the Lesser Sunda Islands in Indonesia. The Lesser Sunda Islands consist of two parallel, linear oceanic island chains, including Bali, Lombok, Sumbawa, Flores, Sumba, Sawu, Timor, Alor, and Tanimbar. The oldest of these islands have been continuously occurring for 10–12 million years. This long period of isolation has allowed significant in situ diversification, making the Lesser Sundas home to many endemic species. This island chain may act as a two-way filter for organisms migrating between the world's two great biogeographic regions, Asia and Australia-Papua. The recognition of a striking cli...

New living fossil, Amethyst worm lizard (Amphisbaena amethysta), from Espinhaço Mountain Range, Brazil

NEWS - New species from the northern Espinhaço Mountains, Caetité municipality, Bahia state, Brazil. Amethyst worm lizard ( Amphisbaena amethysta ) is the 71st species of the genus with 4 precloacal pores and the 22nd species of Caatinga morphoclimatic domain. Identification of the new species shows the reptiles of the Mountains are far from complete and may contain greater diversity of endemic taxa. A. amethysta can be distinguished by its anteriorly convex snout, slightly compressed and unkeeled, pectoral scales arranged in regular annuli, four precloacal pores, distinct head shield, 185-199 dorsal and half annuli, 13-16 caudal annuli, a conspicuous autotomy spot between the 4th-6th caudal annuli, 16-21 dorsal and ventral segments in the middle of the body, 3/3 supralabials, 3/3 infralabials and a smooth and rounded tail tip. A. amethysta occurs in areas with an average elevation of 1000 meters in patches of deciduous and semi-deciduous forests associated with valleys, slopes, fore...