Skip to main content


Oceanitis abyssalis, the deepest sea fungus at 5707 meters from sunken wood

NEWS - Researchers report a new species of deep-sea fungus, Oceanitis abyssalis, described based on SU rDNA sequence analysis and morphological characteristics. The specimen was found attached to a branch of Prunus sp. at a depth of 5707 meters on the abyssal plain in the Northwest Pacific Ocean, east of the Japanese Islands.

Oceanitis abyssalis, the deepest sea fungus at 5707 meters from sunken wood

This discovery is the deepest recorded for a marine fungus. Previous research by an international team in the Ocean Species Discoveries project reported 11 new species of ocean animals at a depth of 7000 meters.

Oceanitis Kohlm (1977) grows on a variety of plant species in a variety of coastal to deep-sea environments. This genus is also widespread in geologically isolated deep-sea areas as one of the most successful fungal taxa in these environments. The thick peridium allows it to adapt to extreme deep-sea conditions.

The morphology of O. abyssalis is very similar to O. scuticella Kohlmeyer, but O. abyssalis having unicellular ascospores, smaller deciduous polar appendages and occasionally tree-like appendages, semi-persistent asci, smaller ascomata that are drop-shaped and cream-colored.

Yuriko Nagano from the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) in Yokosuka and Mohamed Abdel-wahab from Sohag University in Sohag and their team also reviewed the taxonomic status of O. scuticella in the original phylogenetic tree, which is still unclear due to the lack of genetic information and specimen access.

However, the molecular and morphological characteristics of specimens previously identified as O. scuticella likely include several undescribed cryptic species. In particular, the Kuril-Kamchatka Trench material (M0229768) previously identified as O. scuticella is thought to be a representative of O. abyssalis.

The team showed that several deep-sea fungal species are able to colonize wood with intact bark. O. abyssalis has an appendage structure that helps these fungi to settle on submerged wood. Previously, the presence of bark inhibits colonization of deep-sea fungi on wood.

Comparative genomic analysis can provide important insights into the adaptation, evolution and ecology of deep-sea fungi. This genus produces enzymes to degrade submerged wood in an environment that is completely different from the terrestrial environment.

Original research

Yuriko Nagano, Mohamed A. Abdel-wahab, Ryota Nakajima, Akinori Yabuki (2024). Oceanitis abyssalis sp. nov., a new deep-sea fungus from sunken wood collected at the depth of 5707 m in the Northwest Pacific Ocean. Phytotaxa 663 (4): 171-183 DOI:10.11646/phytotaxa.663.4.1

Popular Posts

Thomas Sutikna lives with Homo floresiensis

BLOG - On October 28, 2004, a paper was published in Nature describing the dwarf hominin we know today as Homo floresiensis that has shocked the world. The report changed the geographical landscape of early humans that previously stated that the Pleistocene Asia was only represented by two species, Homo erectus and Homo sapiens . The report titled "A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia" written by Peter Brown and Mike J. Morwood from the University of New England with Thomas Sutikna, Raden Pandji Soejono, Jatmiko, E. Wahyu Saptomo and Rokus Awe Due from the National Archaeology Research Institute (ARKENAS), Indonesia, presents more diversity in the genus Homo. “Immediately, my fever vanished. I couldn’t sleep well that night. I couldn’t wait for sunrise. In the early morning we went to the site, and when we arrived in the cave, I didn’t say a thing because both my mind and heart couldn’t handle this incredible moment. I just went down

Elephant bell gourd (Trichosanthes tricuspidata)

Elephant bell gourd ( Trichosanthes tricuspidata ) is a plant species in the Cucurbitaceae, stems grow elongated to propagate or climb, many branches, cylindrical in shape and green in color. T. cochinchinensis has stem tips or branches that twist to attach themselves to a support or other plant. It grows to climb to cover a support, usually on another plant, up to several meters and creeps along the ground to reach another support. Arrow-shaped leaves, split base, sharp apex and two wings at an acute angle, have many veins ending at a sharp edge, green and have a long petiole. Single flower is white. The fruit is round to oval, ends with a tail, young green and turns red with maturity, thin skin, thick flesh and reddish yellow, has a short stalk and hangs. The seeds are in the middle of the fruit. Seeds are white, oval and flat. Black coated seeds. Elephant bell gourd grows wild in primary and secondary forests, agricultural land, roadsides, watersheds, especially on slopes, damp a

Yellow fever mosquito (Aedes aegypti) use thermal infrared to navigate hosts

NEWS - Aedes aegypti transmits the viruses that cause dengue, yellow fever, Zika and other diseases every year, while Anopheles gambiae transmits the parasite that causes malaria. Their capacity to transmit disease has made mosquitoes the deadliest animals. Moreover, climate change and global travel have expanded the range of A. aegypti beyond tropical geography. The mosquitoes are now present in subtropical climates that were previously unheard of just a few years ago. Male mosquitoes are harmless, but females need blood for egg development. There is no single cue that these insects rely on to feed; they integrate information from many different senses across a wide range of distances. " A. aegypti very adept at finding human hosts. This work provides a new insight into how they achieve this. Once we got all the right parameters, the results were clear and undeniable," says Nicolas DeBeaubien of the University of California at Santa Barbara UCSB. The researchers added

Nactus simakal, gecko evolved in geomorphological habitat of Dauan Island

NEWS - Researchers report a new species of Nactus simakal that lives in a boulder-strewn habitat with deep crevices on Dauan Island in the northern Torres Strait. The Torres Strait Islands lie between Cape York Peninsula, north-eastern Australia, and the southern coast of Papua New Guinea and are rare in gecko biodiversity. The vertebrate fauna of the islands is a mix of Australian and New Guinean species with only two endemic species described to date. Conrad Hoskin of James Cook University in Townsville and colleagues describe the new species as highly distinctive based on ND2 mtDNA genetics and morphologically on its slender, elongated striped pattern. N. simakal is broadly similar to Nactus galgajuga (Ingram, 1978) which is restricted to a boulder-strewn habitat about 750 km to the south in mainland north-eastern Queensland, but is easily distinguished morphologically and genetically from saxicolines. N. simakal is the second vertebrate species to be described and considered