Skip to main content

Oceanitis abyssalis, the deepest sea fungus at 5707 meters from sunken wood

NEWS - Researchers report a new species of deep-sea fungus, Oceanitis abyssalis, described based on SU rDNA sequence analysis and morphological characteristics. The specimen was found attached to a branch of Prunus sp. at a depth of 5707 meters on the abyssal plain in the Northwest Pacific Ocean, east of the Japanese Islands.

Oceanitis abyssalis, the deepest sea fungus at 5707 meters from sunken wood

This discovery is the deepest recorded for a marine fungus. Previous research by an international team in the Ocean Species Discoveries project reported 11 new species of ocean animals at a depth of 7000 meters.

Oceanitis Kohlm (1977) grows on a variety of plant species in a variety of coastal to deep-sea environments. This genus is also widespread in geologically isolated deep-sea areas as one of the most successful fungal taxa in these environments. The thick peridium allows it to adapt to extreme deep-sea conditions.

The morphology of O. abyssalis is very similar to O. scuticella Kohlmeyer, but O. abyssalis having unicellular ascospores, smaller deciduous polar appendages and occasionally tree-like appendages, semi-persistent asci, smaller ascomata that are drop-shaped and cream-colored.

Yuriko Nagano from the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) in Yokosuka and Mohamed Abdel-wahab from Sohag University in Sohag and their team also reviewed the taxonomic status of O. scuticella in the original phylogenetic tree, which is still unclear due to the lack of genetic information and specimen access.

However, the molecular and morphological characteristics of specimens previously identified as O. scuticella likely include several undescribed cryptic species. In particular, the Kuril-Kamchatka Trench material (M0229768) previously identified as O. scuticella is thought to be a representative of O. abyssalis.

The team showed that several deep-sea fungal species are able to colonize wood with intact bark. O. abyssalis has an appendage structure that helps these fungi to settle on submerged wood. Previously, the presence of bark inhibits colonization of deep-sea fungi on wood.

Comparative genomic analysis can provide important insights into the adaptation, evolution and ecology of deep-sea fungi. This genus produces enzymes to degrade submerged wood in an environment that is completely different from the terrestrial environment.

Original research

Yuriko Nagano, Mohamed A. Abdel-wahab, Ryota Nakajima, Akinori Yabuki (2024). Oceanitis abyssalis sp. nov., a new deep-sea fungus from sunken wood collected at the depth of 5707 m in the Northwest Pacific Ocean. Phytotaxa 663 (4): 171-183 DOI:10.11646/phytotaxa.663.4.1

Popular Posts

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...

Takenoshin Nakai swallow-wort (Vincetoxicum nakaianum) replaces V. magnificum and C. magnificum

NEWS - Researchers reported an erect herbaceous species distributed in the eastern part of Honshu Island, Vincetoxicum magnificum (Nakai) Kitag. based on Cynanchum magnificum Nakai, nomen nudum. Therefore, they named this species Takenoshin Nakai swallow-wort ( Vincetoxicum nakaianum K.Mochizuki & Ohi-Toma). Vincetoxicum Wolf (Asclepiadeae) is the third largest genus in the Asclepiadoideae consisting of about 260 species geographically extending from tropical Africa, Asia and Oceania to temperate regions of Eurasia. A total of 23 species are known from Japan, including 16 endemic species. Molecular phylogeny divides Japanese Vincetoxicum into four groups: the “Far Eastern” clade consisting of 11 endemic species and 4 more widespread species, 1 sister species to the “Far Eastern” clade, the “subtropical” clade consisting of 2 species and the “Vincetoxicum s. str.” clade consisting of 5 species. V. magnificum (Nakai) Kitag. (Japanese: tachi-gashiwa) is closely related to V. macro...

Red costate tiger moth (Aloa lactinea)

Red costate tiger moth ( Aloa lactinea ) is an animal species in the Erebidae, a moth with a wingspan of 40 mm, a yellow belly, black antennae with red basalt joints, dark red palpi on the sides and white below, black terminal joints, living in forests and agriculture in the lowlands to mountainous areas. A. lactinea has a white head with a red stripe on the back. Thorax is white. The wings are predominantly white in color with black dots on each corner of the cells and a red margin. The wings have branched pulse lines and a starchy surface. The wing-covered upper abdomen is black with large elliptical plots and is colored yellow forming cells. The lower abdomen is white and has fine hairs that fall out easily. A pair of antennas is black. The forelegs are red, white and black. The other legs are white on the top and black on the bottom. The final joints are white and black which form alternating rings. Tip and sole black all over. The larvae are black in color with a lateral crest ...