Skip to main content

Theonella conica and Entotheonella symbiosis produces high levels of poison to repel predators

NEWS - Researchers have discovered that the sponge Theonella conica contains highly toxic concentrations of the mineral molybdenum (Mo) and identified the bacteria Entotheonella sp that allow it to store the metal in high concentrations. A sponge symbiosis with bacteria that uses toxic molybdenum to repel predators.

Theonella conica and Entotheonella symbiosis produces high levels of poison to repel predators

The earliest multicellular organisms on Earth lived in marine environments and played a vital role in Earth's carbon, nitrogen and silicon cycles by forming a symbiosis with bacteria. Sponges can process and filter 50,000 times their body weight in seawater every day. They collect various elements including toxic materials such as arsenic and molybdenum.

"We collected samples of the rare sponge Theonella conica from the coral reefs of Zanzibar in the Indian Ocean and found high concentrations of molybdenum in them. Molybdenum is an essential element for metabolism in the cells of all animals including humans, and is widely used in industry," said Shani Shoham of Tel Aviv University.

"Such high concentrations were also found in this sponge species in the Gulf of Eilat at depths of more than 27 meters. The sponge contains more molybdenum than any other organism on Earth: 46,793 micrograms per gram of dry weight," Shoham said.

Molybdenum is toxic when its concentration is higher than its solubility in water, but sponges are essentially hollow masses of cells with no organs or tissues. T. conica contains microbes, bacteria and viruses up to 40% of its own body volume and lives in symbiosis.

One of the most dominant bacteria, Entotheonella sp., functions as a 'detoxification organ' to accumulate the metal in the sponge's body. As molybdenum accumulates, the bacteria convert it from its toxic dissolved state to the mineral state.

"Perhaps the molybdenum protects the sponge by saying: 'I am poisonous! Don't eat me!', and in return the sponge does not eat the bacteria and acts as a host," Shoham said.

Molybdenum is in high demand, for example for making high-strength steel, but it is impractical to recover it from sponges. Converting it to weight, you can only get a few grams from each sponge and the sponges themselves are very fragile creatures that require special conditions. Sponges are farmed in marine agriculture mostly for the pharmaceutical industry.

"Our lab previously found high concentrations of arsenic (As) and barium (Ba) in Theonella swinhoei, which is common in the Gulf of Eilat. Entotheonella is responsible for accumulating the metals and converting them into minerals that neutralize the toxicity. Further research is to use this bacteria to treat arsenic-contaminated water," Shoham said.

Original research

Shani Shoham et al., Out of the blue: Hyperaccumulation of molybdenum in the Indo-Pacific sponge Theonella conica. Science Advances. DOI:10.1126/sciadv.adn3923

Popular Posts

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...

Devil's backbone (Euphorbia tithymaloides)

Pokok lipan or devil's-backbone or redbird flower or christmas candle or Pedilanthus tithymaloides ( Euphorbia tithymaloides ) are plant species in Euphorbiaceae, upright, evergreen, gummy shrubs, growing in tropical and subtropical regions. E. tithymaloides likes sandy soils especially with high concentrations of boron, copper, iron, manganese, molybdenum and zinc. This bush grows to 2.4 m high and 61 cm wide. Simple angiosperm leaves, arranged opposite to the stem where each leaf is sessile with a length of 3.6-7.6 cm. The stem has the tip of a handle that supports a group of flowers that are not scented. Bifid crown and ovoid. The involucral bracts are bright red, irregular in shape and length from 1.1 to 1.3 mm. Hairy male and female pedicels. Seed pods are 7.6 mm long, 8.9 mm wide and ovate with clipped ends. Devil's-backbone generally blooms in mid-spring in the subtropical region and in the dry season in the tropics. Pollination is carried out by ants and birds. ...

Thomas Sutikna lives with Homo floresiensis

BLOG - On October 28, 2004, a paper was published in Nature describing the dwarf hominin we know today as Homo floresiensis that has shocked the world. The report changed the geographical landscape of early humans that previously stated that the Pleistocene Asia was only represented by two species, Homo erectus and Homo sapiens . The report titled "A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia" written by Peter Brown and Mike J. Morwood from the University of New England with Thomas Sutikna, Raden Pandji Soejono, Jatmiko, E. Wahyu Saptomo and Rokus Awe Due from the National Archaeology Research Institute (ARKENAS), Indonesia, presents more diversity in the genus Homo. “Immediately, my fever vanished. I couldn’t sleep well that night. I couldn’t wait for sunrise. In the early morning we went to the site, and when we arrived in the cave, I didn’t say a thing because both my mind and heart couldn’t handle this incredible moment. I just went down...