Skip to main content
Search specimens, taxon records etc. Learn more »


Turning Rhodomicrobium bacteria into bioplastic factories

NEWS - Scientists are looking for alternative plastic products that are more sustainable, more biodegradable and far less toxic to the environment. Researchers at Washington University in St. Louis are using Rhodopseudomonas palustris, Rhodomicrobium vannielii and Rhodomicrobium udaipurense to replace petroleum-based plastics.

Turning Rhodomicrobium bacteria into bioplastic factories

The bacteria, with a little encouragement, are expected to become microscopic factories for bioplastics. The ability to produce polyhydroxyalkanoates (PHAs), natural polymers that can be purified to make plastics. Eventually, genetic engineering could coax the bacteria to increase their PHA production.

"There is a huge global demand for bioplastics. They can be produced without adding CO2 to the atmosphere and are completely biodegradable. Our two studies show the importance of taking a multi-pronged approach to finding new ways to produce these valuable materials," said Arpita Bose of Wash. University.

Purple bacteria are a special group of aquatic microbes that have the ability to adapt and create useful compounds from simple ingredients. They can convert carbon dioxide into food using energy from the sun. Another pigment to capture sunlight instead of green chlorophyll.

The researchers assessed the photosynthetic purple non-sulfur bacteria R. vannielii and R. udaipurense for their ability to accumulate PHA across photo-heterotrophic, photo-hydrogenotrophic, photo-ferrotrophic and photo-electrotrophic growth conditions with ammonium chloride (NH4Cl) or dinitrogen gas (N2) as the nitrogen source.

They naturally produce PHA and other bioplastic building blocks to store extra carbon. Under the right conditions, they can continue producing the polymers indefinitely. There is a tremendous appetite for producing polymers, especially when energized with small amounts of electricity and fed with nitrogen.

“We have to look at bacteria that we’ve never seen before. We haven’t been able to realize their potential. These are unique bacteria that look very different from other purple bacteria,” said Eric Conners of Wash. University.

Rhodomicrobium bacteria have unusual properties that make them interesting contenders as natural bioplastic factories. While some species live in culture as individual cells, this particular genus forms interconnected networks that seem particularly well-suited to producing PHAs.

Other types of bacteria can also produce bioplastic polymers, with the help of genetic engineering to produce impressive levels of PHA from Rhodopseudomonas palustris TIE-1, a well-studied species that is typically reluctant to produce polymers.

“TIE-1 is a great organism to study, but historically it’s not the best at producing PHAs,” said Tahina Ranaivoarisoa of Wash. University.

Several genetic changes have helped boost PHA production, but one approach has been particularly successful. The researchers saw impressive results when they inserted a gene that enhances the natural enzyme RuBisCO, a catalyst that helps plants and bacteria capture carbon from the air and water.

Inserting a copy of the RuBisCO gene into the TIE-1 genome was a more effective strategy than deleting competing pathways to boost PHA production in TIE-1. The successful use of the phage integration system opens up a wealth of opportunities for synthetic biology in TIE-1.

The normally sluggish bacteria became relatively large PHA powerhouses after being given the super-potent enzyme. The researchers are optimistic that a similar approach could be applied to other bacteria that might be able to produce bioplastics in greater quantities.

Original research

Ranaivoarisoa TO, Bai W, Karthikeyan R, Steele H, Silberman M, Olabode J, Conners E, Gallagher B, Bose A. 0. Overexpression of RuBisCO form I and II genes in Rhodopseudomonas palustris TIE-1 augments polyhydroxyalkanoate production heterotrophically and autotrophically. Applied and Industrial Microbiology 0:e01438-24 (2024). DOI:10.1128/aem.01438-24

Eric M. Conners, Karthikeyan Rengasamy, Tahina Ranaivoarisoa, Arpita Bose. The phototrophic purple non-sulfur bacteria Rhodomicrobium spp. are novel chassis for bioplastic production. Microbial Biotechnology, Volume17, Issue 8, August 2024, e14552 DOI:10.1111/1751-7915.14552

Popular Posts

A deep-sea isopod Bathyopsurus nybelini adapted to feed submerged Sargassum algae

NEWS - Incredible footage shows a marine species, Bathyopsurus nybelini , feeding on something that sinks from the ocean’s surface. Researchers using the submersible Alvin found the isopod swimming 3.7 miles down using its paddle-like legs to catch an unexpected food source: Sargassum. Researchers from Woods Hole Oceanographic Institution (WHOI), the University of Montana, SUNY Geneseo, Willamette University and the University of Rhode Island found the algae sinking, while the isopod waited and adapted specifically to find and feed on the sinking nutrient source. The Sargassum lives on the surface for photosynthesis. The discovery of a deep-sea animal that relies on food that sinks from the waters miles above underscores the close relationship between the surface and the deep. “It’s fascinating to see this beautiful animal actively interacting with sargassum, so deep in the ocean. This isopod is extremely rare; only a handful of specimens were collected during the groundbreaking Swedis

Ngamugawi wirnagarri reveals evolution of coelacanth fish and history of life on earth

NEWS - An ancient Devonian coelacanth has been remarkably well preserved in a remote location in Western Australia linked to increased tectonic activity. An international team of researchers analysed fossils of the primitive fish from the Gogo Formation of Ngamugawi wirngarri , which straddles a key transition period in the history of coelacanths, between the most primitive and more modern forms. The new fish species adds to the evidence for Earth’s evolutionary journey. Climate change, asteroid strikes and plate tectonics are all key subjects in the origins and extinctions of animals that played a major role in evolution. Is the world’s oldest ‘living fossil’ the coelacanth still evolving? “We found that plate tectonic activity had a major influence on the rate of coelacanth evolution. New species are more likely to have evolved during periods of increased tectonic activity when new habitats were divided and created,” says Alice Clement of Flinders University in Adelaide. The Late Dev

Species going extinct every day and without warning

NEWS - The current rate of human-caused extinction is up to 700 times higher than it was in the past. Extinctions are no different for plants, animals and fungi, although the extinctions of botanicals and invertebrates have been far worse than those of vertebrates. The mass extinctions increased from 1890 to 1940, but a decline in extinctions was only recorded after the 1980s, likely due to taxonomic bottlenecks and the pre-1800 extinction rates being affected by a lack of data. The number of species varies from 2-8 million to 1 trillion, and estimates suggest that most species, especially microbes and fungi that may be key to healthy ecosystems, are still undiscovered. The biodiversity crisis is therefore extremely difficult to measure. “If we don’t know what we have, it’s impossible to measure how much we’re losing. This taxonomic gap urgently needs to be addressed,” say Maarten Christenhusz and RafaĆ«l Govaerts of the Royal Botanic Gardens, Kew. Yet taxonomy is in decline. Misunderst