Skip to main content

Yellow fever mosquito (Aedes aegypti) use thermal infrared to navigate hosts

NEWS - Aedes aegypti transmits the viruses that cause dengue, yellow fever, Zika and other diseases every year, while Anopheles gambiae transmits the parasite that causes malaria. Their capacity to transmit disease has made mosquitoes the deadliest animals.

Yellow fever mosquito (Aedes aegypti) use thermal infrared to navigate hosts

Moreover, climate change and global travel have expanded the range of A. aegypti beyond tropical geography. The mosquitoes are now present in subtropical climates that were previously unheard of just a few years ago.

Male mosquitoes are harmless, but females need blood for egg development. There is no single cue that these insects rely on to feed; they integrate information from many different senses across a wide range of distances.

"A. aegypti very adept at finding human hosts. This work provides a new insight into how they achieve this. Once we got all the right parameters, the results were clear and undeniable," says Nicolas DeBeaubien of the University of California at Santa Barbara UCSB.

The researchers added another sense: detecting infrared radiation from sources that are roughly the same temperature as human skin, combined with CO2 and human odors that mosquitoes rely on when searching for blood. Mosquitoes navigate toward these infrared sources.

"Mosquitoes use CO2 from breath, odor, vision, heat from the skin and moisture from the human body. But each of these cues has limitations," says Avinash Chandel of UCSB.

The insects have poor eyesight, and wind or rapid human movement can interfere with the chemical sense's tracking. They detect heat gain from human skin within about 10 centimeters, and they can sense skin temperature immediately after landing.

These two senses relate to two of the three types of heat transfer: convection, carried by a medium such as air, and conduction through direct contact. But heat energy can also travel longer distances when converted into electromagnetic waves, typically in the infrared (IR) range of the spectrum.

The team placed female mosquitoes in cages and measured their activity in two zones. Each zone was exposed to human odor and CO2 at concentrations similar to human exhaled breath. However, only one zone is exposed to IR from the skin temperature source. A barrier separating the source from the room prevents heat exchange by conduction and convection.

Adding thermal IR from a 34C source doubled the host-seeking activity. This makes infrared radiation a newly documented sense that mosquitoes use to find humans, and it remains effective up to a distance of about 70 cm.

"Previous studies have tried to isolate the effect of thermal IR by presenting only infrared signals without other cues. But any single cue does not stimulate host-seeking activity. Only in the context of other cues, such as elevated CO2 and human odor, does IR make a difference," says Craig Montell of UCSB.

Mosquitoes are unlikely to detect thermal IR radiation in the same way they detect visible light. IR is too low in energy to activate the rhodopsin protein that detects visible light in the animal's eyes. Electromagnetic radiation with a wavelength longer than about 700 nanometers will not activate rhodopsin, and IR generated from body heat is about 9,300 nm.

In fact, no known protein is activated by radiation with such a long wavelength. The sun's heat is converted into IR, which travels through the vacuum of space. The IR reaches Earth and hits atoms in the atmosphere, transferring energy and warming the planet.

The IR that comes from the sun has a different wavelength than the IR produced by human body heat. The researchers suspect that the human body heat that produces IR may hit certain neurons in the mosquito and activate the senses. The mosquito detects the radiation indirectly.

"You have heat that is converted into electromagnetic waves and converted back into heat," Montell said.

Scientists had previously known that the tips of mosquito antennae contain heat-sensing neurons, and removing these tips eliminates the mosquito's ability to detect IR. The tip of each antenna has a structure that is well-adapted to sensing radiation.

A hole protects the peg from conductive and convective heat, allowing highly directional IR radiation to enter and warm the structure. The mosquito then uses the protein TRPA1, essentially a temperature sensor, to detect the infrared radiation.

But heat-activated TRPA1 activity doesn't fully explain the IR range. Sensors that rely exclusively on this protein may not be useful at ranges as far as 70 cm. At this distance, there likely isn't enough IR collected to activate TRPA1.

The researchers investigated a protein in the rhodopsin family that is sensitive to small increases in temperature. Proteins in this group are versatile, involved not only in vision but also in taste and temperature sensing. They found that two of the 10 rhodopsins are expressed in the same antennal neurons as TRPA1.

Removing TRPA1 abolished mosquitoes’ IR sensitivity, but insects with defects in either rhodopsin, Op1 or Op2, were unaffected. Even removing both rhodopsins simultaneously did not completely abolish IR sensitivity, although it significantly weakened the sense.

More intense thermal IR directly activated TRPA1. Op1 and Op2, meanwhile, could be activated at lower levels of thermal IR, and then indirectly trigger TRPA1. The constant human skin temperature and sensitivity of TRPA1 effectively extended the mosquitoes’ IR sensing range to about 3 meters.

Original research

Chandel, A., DeBeaubien, N.A., Ganguly, A. et al. Thermal infrared directs host-seeking behaviour in Aedes aegypti mosquitoes. Nature (2024). DOI:10.1038/s41586-024-07848-5

Popular Posts

Mashpi walkingstick (Trychopeplus mashpiensis) from Chocó, Ecuador, based on males, females and eggs

NEWS - Researchers report Mashpi walkingstick ( Trychopeplus mashpiensis Conle, Valero & Hennemann, sp. nov.) from the Chocó ecoregion of northwestern Ecuador is new to science based on its unique body ornamentation and egg structure morphology. Trychopeplus Shelford 1909 is a genus of Neotropical stick insects (Phasmida Leach 1815) known for its remarkable morphological adaptations that allow it to blend in almost perfectly with epiphytic lichens in its habitat. These adaptations make Trychopeplus one of the most cryptic stick insect genera. The genus was described to distinguish the Neotropical species from Pericentrus Redtenbacher 1908 based on morphological differences and distinct geographic distribution compared to the type species Pericentrus moewisi Redtenbacher 1908. Pericentrus is known to be restricted to East and South Asia, whereas Trychopeplus is endemic to the Neotropics. Oskar Conle from the Bavarian State Collection of Zoology in Germany, Pablo Valero from the Un...

Giant shield bug (Pycanum alternatum)

Giant shield bug or pycanum rubens ( Pycanum alternatum ) is a species of animal in Tessaratomidae, has a large shield covering the back, shiny green-blue-brown colored and appears to have a powder or wax layer, inhabiting the leaves of plants in open forests or bushes . P. alternatum is also called a stink bug because of its ability to release pungent aromas when disturbed. These insects live solitary with a partner and usually the mother gather in a family together in nymphs. White eggs are attached under the leaves of the plant. Nymphs can be found in the same host as their parent. The nymph has a flat rectangular shape with a large vein in the middle like a flat leaf. Nymphs having striking colors are light green, orange and red. Color may represent various stages of development or gender. The initial stage has a small size and red color. It grows in a bigger size and turns orange then ends in green. Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Hemipter...

Purwaceng (Pimpinella pruatjan)

Purwaceng or purwoceng or antanan gunung or Viagra of Java ( Pimpinella pruatjan or Pimpinella priatjan ) are small termas growing horizontally in Apiaceae, growing in villages on Dieng Plateau, Central Java Province, Indonesia, at 1,500 to 2,000 meters above sea level, the roots have medicinal properties for aphrodisiacs and are usually processed in powder form for a mixture of coffee or milk. P. pruatjan grows flat on the ground but does not propagate, small leaves are reddish green for 1-3 cm in diameter. This plant is only found in Java and grows in high mountain areas. A low population where industrial demand is very high results in increasingly scarce. Another place that is likely to become a purwaceng habitat is the Iyang Mountains and the Tengger Mountains in East Java Province. Efforts to multiply and cultivate have a big problem where these plants have difficulty producing seeds. In vitro propagation research through tissue cultivation has been carried out to overcome ...