Skip to main content

Youti yuanshi, 520 million year old fossil unlocks insect evolution

NEWS - An exceptionally rare and detailed fossil, Youti yuanshi, provides a glimpse into one of the earliest ancestors of modern insects, spiders, crabs and centipedes. It was buried more than 520 million years ago in the Cambrian period, when the major groups of today’s animals first evolved.

Youti yuanshi, 520 million year old fossil unlocks insect evolution


The remarkable fossil of the euarthropod group that includes modern insects, spiders and crabs is a tiny larva no bigger than a poppy seed and has remarkably well-preserved internal organs.

Martin Smith of Durham University and colleagues from Yunnan University used advanced synchrotron X-ray tomography scanning techniques at the Diamond Light Source, a UK national synchrotron science facility. The researchers produced 3D images of a miniature brain region, digestive glands, a primitive circulatory system and even nerve traces for the larva’s rudimentary legs and eyes.

The fossil allowed the researchers to look beneath the skin of one of the earliest arthropod ancestors. The complexity of the anatomy suggests this early arthropod relative was far more advanced than previously thought – a developmental milestone crucial for understanding their evolution.

Larvae are so tiny and fragile that the chances of finding even one fossil are slim to none. This simple worm-like fossil is something special. The amazing structures preserved beneath its skin and intricate features have survived half a billion years of decay. 3D imaging of this remarkable tiny larva and the natural fossilization that achieved near-perfect preservation.

Studying this ancient larva provides key clues about the evolutionary steps required for a simple worm-like creature to evolve into a sophisticated arthropod body plan with specialized limbs, eyes and brains.

The complex head allowed arthropods to lead a wide variety of lifestyles and become the dominant organisms in the Cambrian seas. Details like these also help trace how modern arthropods acquired such incredible anatomical complexity and diversity and became the most abundant group of animals today.

The researchers suggest that this fossil fills a key gap in our understanding of how the arthropod body plan originated and became so successful during the Cambrian Explosion of life.

Original source:

Smith, M.R., Long, E.J., Dhungana, A. et al. Organ systems of a Cambrian euarthropod larva. Nature (2024). DOI:10.1038/s41586-024-07756-8

Popular Posts

Four new species and four newly recorded species of Omphale Haliday 1833 (Eulophidae) from China

NEWS - Researchers describe Omphale longigena , Omphale longitarsus , Omphale rectisulcus and Omphale xanthosoma as new species to science and four of their relatives ( O. brevibuccata Szelényi, O. connectens Graham, O. melina Yefremova & Kriskovich and O. obscura Förster) are reported from China for the first time; and a male O. melina is reported for the first time in the world. Omphale Haliday 1833 (Hymenoptera, Eulophidae, Entedoninae) includes 271 species worldwide, a cosmopolitan distribution and the second largest genus in Entedoninae. To date, 203 species from the Americas and Europe are divided into 18 groups. Prior to this study, only 11 species were known from China: O. longiventris (Ling, 1994), O. pulchra (Ling, 1994), O. gibsoni Hansson 2004, O. longiseta Hansson 1996, O. masneri Hansson 1996, O. mellea Hansson 1996, O. salicis (Haliday, 1833), O. stelteri (Boucek, 1971), O. straminea Hansson, 1996, O. sulciscuta (Thomson, 1878) and O. theana (Walker...

Purhepecha oak (Quercus purhepecha), new species of shrub oak endemic to the state of Michoacán, Mexico

NEWS - In Mexico, several Quercus shrubby species are taxonomically very problematic including 8 taxa with similar characteristics. Now researchers report the purhepecha oak ( Quercus purhepecha De Luna-Bonilla, S. Valencia & Coombes sp. nov.) as a new tomentose shrubby white oak species with a distribution only in the Cuitzeo basin in the Trans-Mexican Volcanic Belt (TMVB). Quercus Linnaeus (1753) subdivided into 2 subgenera and 8 sections of which section Quercus (white oaks) has the widest distribution in the Americas, Asia and Europe. This section is very diverse in Mexico and Central America with phylogenomic evidence indicating recent and accelerated speciation in these regions. The number of shrubby oak species in Mexico is still uncertain. De Luna-Bonilla of the Universidad Nacional Autónoma de México and colleagues found at least 3 taxa in the TMVB, specifically Quercus frutex Trelease (1924), Quercus microphylla Née (1801) and Quercus repanda Bonpland (1809). In 2016,...

Laniger bat tick (Ixodes lanigeri), new hard tick species (Ixodidae) from mouse-eared bats (Myotis) in Vietnam

NEWS - Researchers have identified Ixodes ticks from Vietnam based on morphological and molecular characteristics of females, nymphs and larvae as a new species, laniger bat tick ( Ixodes lanigeri ), which like other members of the Ixodes ariadnae complex appears to show a preference for vesper bats as a typical host. Historically, for more than a century and a half, only one species has been called the “long-legged bat tick”: Ixodes vespertilionis Koch. However, over the past decade, it has been molecularly recognized that long-legged ixodid ticks associated with bats may represent at least six species. Host associations and geographic separation may explain the evolutionary divergence of the new species from its closest living relative Murina hilgendorfi Peters in East Asia, Japan, as no Myotis or Murina spp. have overlapping distributions between Vietnam and the Japanese mainland. On the other hand, assuming that I. lanigeri may be present in other myotine bats and knowing that s...