Skip to main content

A deep-sea isopod Bathyopsurus nybelini adapted to feed submerged Sargassum algae

A deep-sea isopod Bathyopsurus nybelini adapted to feed submerged Sargassum algae

NEWS - Incredible footage shows a marine species, Bathyopsurus nybelini, feeding on something that sinks from the ocean’s surface. Researchers using the submersible Alvin found the isopod swimming 3.7 miles down using its paddle-like legs to catch an unexpected food source: Sargassum.

Researchers from Woods Hole Oceanographic Institution (WHOI), the University of Montana, SUNY Geneseo, Willamette University and the University of Rhode Island found the algae sinking, while the isopod waited and adapted specifically to find and feed on the sinking nutrient source.

The Sargassum lives on the surface for photosynthesis. The discovery of a deep-sea animal that relies on food that sinks from the waters miles above underscores the close relationship between the surface and the deep.

“It’s fascinating to see this beautiful animal actively interacting with sargassum, so deep in the ocean. This isopod is extremely rare; only a handful of specimens were collected during the groundbreaking Swedish Deep Sea Expedition in 1948,” said Johanna Weston of Woods Hole Oceanographic Institution.

The research team combined morphological analysis, CT scanning, DNA sequencing and microbiological studies to show that the species is physiologically and behaviorally adapted to use submerged resources. The integrative process of observation and analysis revealed important links in this marine food web.

"Deep-sea ecosystems seem like harsh environments, but the animals that live in these habitats are perfectly suited to the conditions. Animals in dark, high-pressure environments have evolved adaptations to feed on algae that grow in ecosystems exposed to sunlight," said Mackenzie Gerringer of the State University of New York at Geneseo.

B. nybelini has adapted a special swimming style. It moves upside down and backward with large paddles that allow it to scoop up sargassum from the seafloor. This distinctive movement may be an evolutionary strategy to avoid predation in shallow waters.

The animal also has a serrated mouth that is ideal for tearing apart tough algae, while gut bacteria help with digestion. Algae are difficult for many animals to digest because their cell walls are made of polysaccharides, strong, complex molecules. The gut microbiome has genes to break down these tough compounds.

"Life everywhere, even in the deepest ocean depths, is inextricably linked to the microorganisms around it," said Logan Peoples of the University of Montana at Polson.

Sargassum in the tropical Atlantic and Caribbean appears to have changed with a major explosion that created an impact ecological and economic importance to coastal communities in the region. Much remains to be understood about the abundance and uses of Sargassum in the deep sea. Algae have significant implications for carbon cycling and storage.

Original research

Peoples Logan M., Gerringer Mackenzie E., Weston Johanna N. J., León-Zayas Rosa, Sekarore Abisage, Sheehan Grace, Church Matthew J., Michel Anna P. M., Soule S. Adam and Shank Timothy M. (2024). A deep-sea isopod that consumes Sargassum sinking from the ocean’s surface. Proceedings of the Royal Society B: Biological Sciences, 29120240823, DOI:10.1098/rspb.2024.0823







Popular Posts

Six new species forming the Sumbana species group in genus Nemophora Hoffmannsegg 1798 from Indonesia

NEWS - Sumbawa longhorn ( Nemophora sumbana Kozlov, sp. nov.), Timor longhorn ( Nemophora timorella Kozlov, sp. nov.), shining shade longhorn ( Nemophora umbronitidella Kozlov, sp. nov.), Wegner longhorn ( Nemophora wegneri Kozlov, sp. nov.), long brush longhorn ( Nemophora longipeniculella Kozlov, sp. nov.), and short brush longhorn ( Nemophora brevipeniculella Kozlov, sp. nov.) from the Lesser Sunda Islands in Indonesia. The Lesser Sunda Islands consist of two parallel, linear oceanic island chains, including Bali, Lombok, Sumbawa, Flores, Sumba, Sawu, Timor, Alor, and Tanimbar. The oldest of these islands have been continuously occurring for 10–12 million years. This long period of isolation has allowed significant in situ diversification, making the Lesser Sundas home to many endemic species. This island chain may act as a two-way filter for organisms migrating between the world's two great biogeographic regions, Asia and Australia-Papua. The recognition of a striking cli...

Golden tortoise beetle (Charidotella sexpunctata)

Kepik emas or golden tortoise beetle ( Charidotella sexpunctata ) is a type of leaf beetle species in the Chrysomelidae family, up to 14mm long and bright golden in glass discs. These insects usually live on Ipomoea carnea trees that grow in environments close to water. C. sexpunctata takes refuge in a transparent disc consisting of three parts with four signs as fals legs, a pair of antennas and six legs. This beetle is able to change color if it feels threatened by flowing liquid between the cuticles and the glittering gold color turns into blood red or worn brown. Kepik emas usually lay eggs up to 20 items, white and attached to the branches or on the underside of the leaves. Yellowish or reddish brown larvae will appear from eggs that hatch within 5 to 10 days. Adults and larvae eat leaves which cause large holes. Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Coleoptera Family: Chrysomelidae Subfamily: Cassidinae Tribe: Aspidimorphini Genus: Aspidimor...

Bitter vine (Mikania micrantha)

Sembung rambat or bitter vine ( Mikania micrantha ) is a plant species in Asteraceae, crawling or wrapped around trees, perennial that grows up to 27 mm per day in tropical climates, branched stems where heart-shaped or triangular leaves are arranged in pairs and a plant can cover more than 25 square meters in a few months. M. micrantha has square-shaped stems or longitudinal bones, light green, many branches and has fine hairs. The stems have segments for lengths of 75-215 mm, each segment has a pair of leaves, new shoots and flowers. New roots grow when the segments come in contact with the soil. The leaves are in pairs and facing each other. Strands do not have hair, heart-shaped or triangular with jagged edges, length 30-125 mm, width 15-60 mm. Petiole is 1-6 cm long and has fine hairs. The flower panicle grows from the armpit of the leaf and the tip of the stem, having 3-15 mm long stems. Each flower head has 4 minor flowers. The crown is greenish-white, tubular and measures ...