Skip to main content

Albatrosses and Penguins use highly sensitive beaks to find food

Albatrosses and Penguins use highly sensitive beaks to find food

NEWS - Penguins and albatrosses have highly sensitive areas on their beaks to help them find food. An international team of researchers studied more than 350 modern bird species and found that seabirds have a high density of sensory receptors and nerves at the tip of their beaks that have previously been identified in specialist tactile feeders such as ducks.

This touch-sensitive area may have originated in a common ancestor and further research is needed to determine whether it has a specific function in modern birds. Further research into beaks and foraging behaviour could help conserve some birds, many of which are threatened with extinction.

Humans and other primates use their hands, but birds use their beaks to interact with the world around them. Some birds have special touch-sensitive areas at the tip of their beaks to help them find food, but this ability has not been widely studied and it is not known how the phenomenon evolved or how widespread it is.

“Many scientists assume that most birds have touch-sensitive beaks, but we haven’t investigated enough to know whether it is a general ability or whether it is restricted to certain bird families,” says Carla du Toit of the University of Cambridge.

Austrodyptornithes, which include albatrosses, petrels, penguins and many other bird species in this group, are critically endangered. Understanding how they find food using their beaks could be a valuable tool to aid conservation.

Du Toit and a team from the UK and South Africa studied 361 modern bird species based on fossil records, skeletons and birds accidentally killed by fishing lines and nets. The team focused on how the beaks are constructed and connected to nerves including blood vessels.

Albatrosses and penguins have sensory receptor organs with a high density and concentration of nerves in their beaks. Seabirds are not known to be tactile foragers. These sensitive beaks help them find food at night and underwater by detecting tiny vibrations from potential prey.

However, these sensitive areas may also be ‘leftover’ from a common ancestor in birds that had no special function, such as the beaks of ostriches and emus. Further research in living birds is needed to establish the exact purpose of these touch-sensitive areas to help determine how the ability evolved.



“This is the first time we’ve seen a touch-sensitive beak in a seabird. It’s remarkable that no-one has really studied this in detail, considering we all learn about the evolution of Darwin’s finches’ beaks at school,” du Toit said.

The findings play a role in conserving the 22 known albatross species, 15 of which are threatened with extinction and two are listed as critically endangered. Commercial fishing with fishing lines kills around 100,000 birds a year when they become entangled and drown.

“Of course, the bigger threats to birds like albatrosses are climate change, rising sea temperatures, plastic pollution and declining fish stocks. But if there’s a way to reduce the risk to seabirds, even in a small way, then it’s worth it. These are very special birds,” du Toit said.

Original research

du Toit Carla J., Bond Alexander L., Cunningham Susan J., Field Daniel J. and Portugal Steven J. (2024). Tactile bill-tip organs in seabirds suggest conservation of a deep avian symplesiomorphy. Biolgy Letters 2020240259, DOI:10.1098/rsbl.2024.0259

Dlium theDlium

Popular Posts

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...

False nettle (Boehmeria cylindrica)

False nettle ( Boehmeria cylindrica ) is a species of plant in the Urticaceae family, a herb or small shrub, up to 160 cm tall, usually monoecious but rarely dioecious. The leaves are paired or alternate, and the inflorescence is a spikelet with a cluster of small bracts at the tip. B. cylindrica generally grows to a height of 50-100 cm. Spine-like hairs form in the leaf axils. The leaves are oval and up to 10 cm long and 4 cm wide. The flowers are green or greenish-white and emerge from the upper leaf axils. Male and female flowers usually grow on separate plants. Male flowers are more numerous among the spikes in clusters. Female flowers are less evenly distributed along the spikes. The small, oval seeds are covered with small, hook-like hairs. Ripe seeds are dark brown. The inflorescence resembles a spike and is up to 3 cm long. This species can be found in moist to mesic deciduous forest habitats, growing abundantly along streambanks, floodplains, and lowlands. B. cylindrica is ...

Devil's backbone (Euphorbia tithymaloides)

Pokok lipan or devil's-backbone or redbird flower or christmas candle or Pedilanthus tithymaloides ( Euphorbia tithymaloides ) are plant species in Euphorbiaceae, upright, evergreen, gummy shrubs, growing in tropical and subtropical regions. E. tithymaloides likes sandy soils especially with high concentrations of boron, copper, iron, manganese, molybdenum and zinc. This bush grows to 2.4 m high and 61 cm wide. Simple angiosperm leaves, arranged opposite to the stem where each leaf is sessile with a length of 3.6-7.6 cm. The stem has the tip of a handle that supports a group of flowers that are not scented. Bifid crown and ovoid. The involucral bracts are bright red, irregular in shape and length from 1.1 to 1.3 mm. Hairy male and female pedicels. Seed pods are 7.6 mm long, 8.9 mm wide and ovate with clipped ends. Devil's-backbone generally blooms in mid-spring in the subtropical region and in the dry season in the tropics. Pollination is carried out by ants and birds. ...