Skip to main content

Citarum Living Lab, an effort to revitalize river collaboratively based on the community

Citarum Living Lab, an effort to revitalize river collaboratively based on the community

NEWS - The Citarum River, one of Indonesia’s most polluted waterways, is undergoing a transformation towards revitalisation through an innovative “Living Lab” approach. Research led by Monash University explores how the Citarum Living Lab contributes to planetary health in response to global river pollution and economic development imperatives.

The Citarum River in West Java, Indonesia, is a critical source of water, food, energy and livelihood for over 25 million people.

The Citarum Living Lab is an effort to collaboratively restore and empower rivers. A pioneering program that combines community-led, cross-disciplinary research and practical interventions to address pollution, urbanisation and climate change impacts.

The project brings together local communities, government, NGOs, businesses and researchers to collaboratively develop and test sustainable solutions to restore river ecosystems. An initiative that explores local knowledge and encourages community participation to create scalable solutions that balance economic, social and environmental needs.

"Through the Citarum Living Lab, we aim to empower communities and stakeholders to collaboratively develop actionable strategies to address the complex challenges facing the Citarum River," said Paris Hadfield, Research Fellow from Monash Sustainable Development Institute (MSDI)

A new approach to more inclusive and effective watershed management, particularly in peri-urban environments. The research focuses on the importance of local engagement and interdisciplinary collaboration in addressing global environmental challenges and sustainable development goals. A key aspect of the project is practical and sustainable design interventions.

"The design element is critical to this project, as it helps integrate technical solutions with the social fabric of the community. This creates a system that is not only efficient but also culturally and socially resonant," said Michaela Prescott from Monash Art, Design and Architecture (MADA)

Original research

Hadfield P, Prescott M, Holden J, Novalia W, Suwarso R, Marthanty DR, et al. (2024). Citarum Living Lab: Co-creating visions for sustainable river revitalisation. PLOS Water 3(8): e0000200, DOI:10.1371/journal.pwat.0000200

Popular Posts

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...

Red costate tiger moth (Aloa lactinea)

Red costate tiger moth ( Aloa lactinea ) is an animal species in the Erebidae, a moth with a wingspan of 40 mm, a yellow belly, black antennae with red basalt joints, dark red palpi on the sides and white below, black terminal joints, living in forests and agriculture in the lowlands to mountainous areas. A. lactinea has a white head with a red stripe on the back. Thorax is white. The wings are predominantly white in color with black dots on each corner of the cells and a red margin. The wings have branched pulse lines and a starchy surface. The wing-covered upper abdomen is black with large elliptical plots and is colored yellow forming cells. The lower abdomen is white and has fine hairs that fall out easily. A pair of antennas is black. The forelegs are red, white and black. The other legs are white on the top and black on the bottom. The final joints are white and black which form alternating rings. Tip and sole black all over. The larvae are black in color with a lateral crest ...

Javanese grasshopper (Valanga nigricornis)

Wooden grasshopper or Javanese grasshopper ( Valanga nigricornis ) is an animal species of Acrididae, grasshoppers that have at least 18 subspecies, insects with very wide diversity in color and size, sexual dimorphism in which females are larger in size and paler in color. V. nigricornis in males has a length of 45-55 millimeters and females 15-75 mm. The head is square and green or yellow or brown or black in color. A pair of antennas has a black color. The eyes are large and gray or white or brownish. The hind legs are very large and have a green or yellow or brown or black color, plain or brindle. The limbs have two rows of large and long spines with black tips facing backward. The wings have a length exceeding the belly, a rough surface and are brown or green or yellow or black in color with pulse lines forming spaces filled with black color. The hind wings are rose red which will be visible when flying. Nymphs are pale green or yellow or brown or blackish in color. Javanese gr...