Skip to main content
Search specimens, taxon records etc. Learn more »


Giant asteroid hits Jupiter's moon Ganymede, changing its rotation 4 billion years ago

NEWS - About 4 billion years ago, an asteroid slammed into Jupiter’s moon Ganymede, shifting the axis of the largest moon in the solar system. The asteroid was about 20 times larger than the one that ended the age of dinosaurs on Earth, causing one of the largest impacts with a visible footprint in the solar system.

Giant asteroid hits Jupiter's moon Ganymede, changing its rotation 4 billion years ago

“Jupiter’s moons Io, Europa, Ganymede and Callisto all have interesting features, but what caught my attention were the grooves on Ganymede,” said planetary scientist Hirata Naoyuki of Kobe University.

“We know that these features were formed by an asteroid impact about 4 billion years ago, but we weren’t sure how big the impact was and what impact it had on the moon,” Naoyuki said.

Ganymede is the largest moon in the solar system, even larger than the planet Mercury, and harbors an ocean of liquid water beneath its icy surface. The moon is tidally locked, meaning it always shows the same side to the planet in orbit.

Much of the surface is covered with concentric circles of grooves around a single point, leading researchers in the 1980s to conclude that the grooves were the result of a major impact event. .

Researchers have struggled with this and Hirata was the first to recognize the impact site, which is thought to be almost exactly on the meridian farthest from Jupiter. A similar impact event on Pluto caused the dwarf planet's axis of rotation to shift, and data from the New Horizons spacecraft suggests Ganymede may have undergone a similar change in orientation.

The asteroid that struck Ganymede was probably 300 kilometers (180 miles) across, or 20 times larger than the asteroid that hit Earth 65 million years ago, ending the age of the dinosaurs and creating craters 1,400 to 1,600 kilometers (750 to 1,000 miles) across.

"I want to understand the evolutionary origins of Ganymede and other Jupiter moons. The massive impact must have had a significant impact on their early evolution, but the thermal and structural effects of the impact have not been investigated at all. I believe that further research into the internal evolution of icy moons is possible," Hirata said.

Such a large impact would have changed the mass distribution and caused the rotation axis to shift to its current position. Ganymede is the final destination for ESA’s JUICE spacecraft. If all goes well, it will enter orbit in 2034 and conduct six months of observations to send back data that will help answer many questions.

Original research

Hirata, N. Giant impact on early Ganymede and its subsequent reorientation. Scientific Reports 14, 19982 (2024), DOI:10.1038/s41598-024-69914-2

Popular Posts

A deep-sea isopod Bathyopsurus nybelini adapted to feed submerged Sargassum algae

NEWS - Incredible footage shows a marine species, Bathyopsurus nybelini , feeding on something that sinks from the ocean’s surface. Researchers using the submersible Alvin found the isopod swimming 3.7 miles down using its paddle-like legs to catch an unexpected food source: Sargassum. Researchers from Woods Hole Oceanographic Institution (WHOI), the University of Montana, SUNY Geneseo, Willamette University and the University of Rhode Island found the algae sinking, while the isopod waited and adapted specifically to find and feed on the sinking nutrient source. The Sargassum lives on the surface for photosynthesis. The discovery of a deep-sea animal that relies on food that sinks from the waters miles above underscores the close relationship between the surface and the deep. “It’s fascinating to see this beautiful animal actively interacting with sargassum, so deep in the ocean. This isopod is extremely rare; only a handful of specimens were collected during the groundbreaking Swedis

Ngamugawi wirnagarri reveals evolution of coelacanth fish and history of life on earth

NEWS - An ancient Devonian coelacanth has been remarkably well preserved in a remote location in Western Australia linked to increased tectonic activity. An international team of researchers analysed fossils of the primitive fish from the Gogo Formation of Ngamugawi wirngarri , which straddles a key transition period in the history of coelacanths, between the most primitive and more modern forms. The new fish species adds to the evidence for Earth’s evolutionary journey. Climate change, asteroid strikes and plate tectonics are all key subjects in the origins and extinctions of animals that played a major role in evolution. Is the world’s oldest ‘living fossil’ the coelacanth still evolving? “We found that plate tectonic activity had a major influence on the rate of coelacanth evolution. New species are more likely to have evolved during periods of increased tectonic activity when new habitats were divided and created,” says Alice Clement of Flinders University in Adelaide. The Late Dev

Species going extinct every day and without warning

NEWS - The current rate of human-caused extinction is up to 700 times higher than it was in the past. Extinctions are no different for plants, animals and fungi, although the extinctions of botanicals and invertebrates have been far worse than those of vertebrates. The mass extinctions increased from 1890 to 1940, but a decline in extinctions was only recorded after the 1980s, likely due to taxonomic bottlenecks and the pre-1800 extinction rates being affected by a lack of data. The number of species varies from 2-8 million to 1 trillion, and estimates suggest that most species, especially microbes and fungi that may be key to healthy ecosystems, are still undiscovered. The biodiversity crisis is therefore extremely difficult to measure. “If we don’t know what we have, it’s impossible to measure how much we’re losing. This taxonomic gap urgently needs to be addressed,” say Maarten Christenhusz and RafaĆ«l Govaerts of the Royal Botanic Gardens, Kew. Yet taxonomy is in decline. Misunderst