Skip to main content

Global natural and planted forests mapping at fine spatial resolution of 30 meters

NEWS - Reforestation to combat climate change often encroaches on natural forests, wetlands and grasslands, destroying biodiversity, disrupting the natural environment and disrupting carbon and water cycles.

Forest cover is increasing globally, but it is difficult to know whether this is natural forest regeneration and growth or whether it is new tree planting. Accurately mapping forests with remote sensing technology could help.

Global natural and planted forests mapping at fine spatial resolution of 30 meters

Researchers from Tongji University in Shanghai and South Dakota State University in Brookings present an innovative approach that automatically maps natural forests and new plantations accurately at a spatial resolution of 30 meters.

“Accurately mapping the global distribution of natural forests and plantations at such a fine spatial resolution is challenging, but it is critical to understanding and mitigating environmental issues such as carbon sequestration and biodiversity loss,” said Yuelong Xiao of Tongji University in Shanghai.

“Traditional methods often lack sufficient sampling, hampering the accuracy and resolution of global forest maps. Our study presents a new approach to overcome these limitations by generating extensive sampling through time-series analysis of Landsat imagery,” said Xiao.

The data were taken from several different mapping systems, with the primary sources being Google Earth Engine Landsat imagery from 1985-2021 preprocessed by the US Geological Survey and imagery from the Sentinel-1 satellite from 2021.

The researchers also used the European Space Agency’s 2021 land cover map (WorldCover2021) and data from the ALOS Global Digital Surface Model. To overcome computational limitations, the world was divided into 57,559 small patches covering the entire globe and 70 million samples.

Established natural forests and plantations were distinguished using a value called disturbance frequency. Natural forests are more stable and less likely to change in size due to external factors, while plantations are more likely to be disturbed through reforestation or deforestation and other natural and man-made changes.

“This method for accurately mapping natural forests and plantations globally at 30-meter resolution is reliable. The resulting maps and samples are valuable resources for future environmental research and management, contributing to efforts to combat climate change,” Xiao said.

“Next, we will use the resulting samples and mapping methods to periodically update and refine global maps of natural and planted forests. Our ultimate goal is to improve the accuracy and resolution of forest maps worldwide, providing critical data for policymakers and researchers,” Xiao said.

Original research

Yuelong Xiao, Qunming Wang, Hankui K. Zhang. Global Natural and Planted Forests Mapping at Fine Spatial Resolution of 30 m. Journal of Remote Sensing. 2024;4:0204, DOI:10.34133/remotesensing.0204

Dlium theDlium

Popular Posts

Javan mocca or Javan slender caesar (Amanita javanica)

OPINION - Javan mocca or Javan slender caesar ( Amanita javanica ) is a mysterious fungus species and has been enigmatic since it was first reported by Boedijn in 1951 and after that no explanation or reporting of specimens is believed to be the same as expected. Boedijn (1951) described A. javanica which grew on Java island as having the characteristics covered in the Amanita genus. Corner and Bas in 1962 tried to describe Javan mocca and all species in Amanita based on specimens in Singapore. Over time some reports say that they have found A. javanica specimens in other Southeast Asia including also China, Japan, India and Nepal. But there is no definitive knowledge and many doubt whether the specimen is the same as described by Boedijn (1951). I was fortunate to have seen this species one afternoon and soon I took out a camera for some shots. In fact, I've only met this mushroom species once. Javan mocca is an endangered species and I have never seen in my experience in...

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...

Tekijem (Cyperus cyperoides)

Tekijem ( Cyperus cyperoides ) is a plant species in Cyperaceae, annual grasses that grow in seasonal wetlands, open or shaded fields, swamps, ponds, rice fields, roadsides, open forests, secondary forests and shrubs at altitudes up to 1,800 m in the tropics. C. cyperoides has an upright, triangular shape, 20-75 cm tall from a very short rhizome and has no stolon. The lanceolate-shaped leaves are narrow and long, the tips are pointed, slippery, shiny, green and grow at the bottom and at the top of the stem. The terminal flower appears on the tip of the stem, cylindrical spiklet shaped and green. Each stem has two to seven flowers, each of which has a short or long stem that grows at the end of the stem together with the leaves. Tekijem grows solitary or in small groups at a distance. Propagating using vegetative and generative methods using seeds. At least three sub-species are Cyperus cyperoides cyperoides , Cyperus cyperoides flavus and Cyperus cyperoides pseudoflavus . Th...