Skip to main content

Ngamugawi wirnagarri reveals evolution of coelacanth fish and history of life on earth

Ngamugawi wirnagarri reveals evolution of coelacanth fish and history of life on earth 1

NEWS - An ancient Devonian coelacanth has been remarkably well preserved in a remote location in Western Australia linked to increased tectonic activity. An international team of researchers analysed fossils of the primitive fish from the Gogo Formation of Ngamugawi wirngarri, which straddles a key transition period in the history of coelacanths, between the most primitive and more modern forms.

The new fish species adds to the evidence for Earth’s evolutionary journey. Climate change, asteroid strikes and plate tectonics are all key subjects in the origins and extinctions of animals that played a major role in evolution. Is the world’s oldest ‘living fossil’ the coelacanth still evolving?

“We found that plate tectonic activity had a major influence on the rate of coelacanth evolution. New species are more likely to have evolved during periods of increased tectonic activity when new habitats were divided and created,” says Alice Clement of Flinders University in Adelaide.

The Late Devonian Gogo Formation contains a particularly well-preserved collection of fish and invertebrate fossils. Fossils from the Devonian Period (359-419 million years ago) provide important insights into the early anatomy of this lineage and the evolution that led to humans.

“Over 35 years, we have recovered some of the most beautifully preserved 3D fossils from the Gogo site and have made many important discoveries, including mineralised soft tissue and the origins of complex sexual reproduction in vertebrates,” said John Long from Flinders University.

Much of human anatomy dates back to the Early Palaeozoic (540-350 million years ago). Jaws, teeth, a ossified skull, genitals, a chambered heart and paired lungs appeared in early fish. The Gogo Formation is an ancient tropical reef that was home to more than 50 species of fish 380 million years ago, now covered by dry rock.

“We calculated the rate of evolution over 410 million years. The evolution of coelacanths has slowed dramatically since the time of the dinosaurs, with some interesting exceptions,” Long said.

Coelacanths are deep-sea fish that live off the coast of East Africa and Indonesia and can grow up to 2 metres (6.6 feet) long. These lobe-finned fish have strong bones in their fins that are similar to the bones in a human arm. They are thought to be more closely related to lungfish and tetrapods than to most other fish.

Ngamugawi wirnagarri reveals evolution of coelacanth fish and history of life on earth 2


Over the past 410 million years, there are more than 175 species of coelacanths worldwide. During the Mesozoic Era, the age of the dinosaurs, coelacanths diversified significantly, with some species developing unusual body shapes. However, by the end of the Cretaceous Period (66 million years ago) they mysteriously disappeared from the fossil record.

The end-Cretaceous extinction event, triggered by a large asteroid impact, wiped out 75% of all life on Earth, including all non-avian dinosaurs. Coelacanths were also wiped out as victims of the same mass extinction event.

But in 1938, fishermen off the coast of South Africa unearthed a mysterious giant fish from the depths of the ocean, and it has since gained cult status in the world of evolutionary biology. New research challenges the idea that living coelacanths are the oldest living fossils.

“Coelacanths first appear in the geological record more than 410 million years ago, with isolated fossils from places like China and Australia. However, most early forms are poorly known. Ngamugawi wirngarri fills that gap,” says Richard Cloutier of the Université du Québec à Rimouski.

Original research

Clement, A.M., Cloutier, R., Lee, M.S.Y. et al. A Late Devonian coelacanth reconfigures actinistian phylogeny, disparity, and evolutionary dynamics. Nature Communications 15, 7529 (2024), DOI:10.1038/s41467-024-51238-4

Popular Posts

New living fossil, Amethyst worm lizard (Amphisbaena amethysta), from Espinhaço Mountain Range, Brazil

NEWS - New species from the northern Espinhaço Mountains, Caetité municipality, Bahia state, Brazil. Amethyst worm lizard ( Amphisbaena amethysta ) is the 71st species of the genus with 4 precloacal pores and the 22nd species of Caatinga morphoclimatic domain. Identification of the new species shows the reptiles of the Mountains are far from complete and may contain greater diversity of endemic taxa. A. amethysta can be distinguished by its anteriorly convex snout, slightly compressed and unkeeled, pectoral scales arranged in regular annuli, four precloacal pores, distinct head shield, 185-199 dorsal and half annuli, 13-16 caudal annuli, a conspicuous autotomy spot between the 4th-6th caudal annuli, 16-21 dorsal and ventral segments in the middle of the body, 3/3 supralabials, 3/3 infralabials and a smooth and rounded tail tip. A. amethysta occurs in areas with an average elevation of 1000 meters in patches of deciduous and semi-deciduous forests associated with valleys, slopes, fore

Early human species inhabited highlands for availability and diversity of food

NEWS - Researchers at the IBS Center for Climate Physics (ICCP) at Pusan National University in South Korea suggest that the patchwork of ecosystems found in mountainous regions played a key role in human evolution. Using a vast dataset of fossils, artifacts, high-resolution landscapes and 3 million-year-long simulations of Earth’s climate, a team of scientists is painting a clearer picture of how and why early humans adapted to rugged landscapes. Hominins are often found in and near mountainous regions. Now Elke Zeller and Axel Timmermann have helped explain why so many of our evolutionary relatives preferred to be “highlanders” rather than “lowlanders.” Mountainous regions are rich in biodiversity, providing a range of environmental conditions in which different species of plants and animals thrive. Steep areas typically exhibit a greater diversity, density of ecosystems and vegetation types, known as biomes. This diversity of biomes was attractive to early humans because it provided

Black-spotted longnose gudgeon (Microphysogobio punctatus) as new species and M. elongatus as synonym of M. tungtingensis

NEWS - Researchers have established the black-spotted longnose gudgeon ( Microphysogobio punctatus ) as a new species and redescribed M. elongatus (Yao & Yang, 1977) as a junior synonym of M. tungtingensis (Nichols, 1926) based on morphological analysis and molecular evidence supported by mitochondrial gene sequences. M. tungtingensis has been considered valid since its description, but its morphology is still vague especially when compared to another similar species, M. elongatus . In this study, researchers examined both species and compared several lots of specimens from a wide geographical range. There was no significant morphological difference between the two. Molecular evidence supported by mitochondrial gene sequences also showed low genetic distance and suggested that M. elongatus is a junior synonym of M. tungtingensis . At the same time, M. punctatus was found to have a similar distribution to both. M. punctatus is distributed in the Guijiang and Liujiang rivers, t