Skip to main content


Proterozoic microfossils and understanding complex eukaryotic evolution

NEWS - Eukaryotes have evolved and dominated the biosphere, encompassing the vast majority of living species and the vast majority of biomass. The early evolution of eukaryotes marked a turning point for life on Earth.

Proterozoic microfossils and understanding complex eukaryotic evolution

Biologically complex organisms diversified in the Proterozoic Eon over 539 million years ago and have been a fundamental question in evolutionary biology. Paleontologists have attempted to document the rise of eukaryotes with fossil evidence.

The Proterozoic record has provided important insights into this biological radiation for the past 70 years. However, the delicate and microscopic nature of subcellular features has made it difficult to fossilize early eukaryotes.

The chemical and genetic biomarker signatures of living eukaryotes today are the only complementary tools available to reconstruct the ancestry of eukaryotes. These data are used in parallel with molecular clocks and biomarkers from sedimentary organic matter to collectively enable researchers to reconstruct the timing and ecology of early eukaryote evolution.

“Exceptionally preserved Proterozoic microfossils are critical for interpreting, calibrating molecular clocks, and testing paleoecological hypotheses,” said Ross Anderson and George Wedlake of the University of Oxford and colleagues, and Sanaa Mughal of the University of Alberta.

“We highlight recent technologies and new approaches to biomolecular preservation and composition,” said said Anderson and colleagues.

Advances in understanding the taphonomy of early eukaryotes, methods for placing them on the tree of life, and unique paleobiological data offer the prospect of exploring Proterozoic microfossils with greater utility for documenting early eukaryotic evolution.

Eukaryota is the domain of life that sits above the Kingdoms in the taxonomic classification that includes Animalia, Archaea, Bacteria, Chromista, Fungi, Plantae and Protozoa. This domain refers to the popular descriptions by Édouard Chatton in 1925 and Robert Whittaker & Lynn Margulis in 1978.

Original research

Anderson Ross P., Mughal Sanaa and Wedlake George O. (2024). Proterozoic microfossils continue to provide new insights into the rise of complex eukaryotic life. Royal Society Open Science, 11240154, DOI:10.1098/rsos.240154

Popular Posts

Elephant bell gourd (Trichosanthes tricuspidata)

Elephant bell gourd ( Trichosanthes tricuspidata ) is a plant species in the Cucurbitaceae, stems grow elongated to propagate or climb, many branches, cylindrical in shape and green in color. T. cochinchinensis has stem tips or branches that twist to attach themselves to a support or other plant. It grows to climb to cover a support, usually on another plant, up to several meters and creeps along the ground to reach another support. Arrow-shaped leaves, split base, sharp apex and two wings at an acute angle, have many veins ending at a sharp edge, green and have a long petiole. Single flower is white. The fruit is round to oval, ends with a tail, young green and turns red with maturity, thin skin, thick flesh and reddish yellow, has a short stalk and hangs. The seeds are in the middle of the fruit. Seeds are white, oval and flat. Black coated seeds. Elephant bell gourd grows wild in primary and secondary forests, agricultural land, roadsides, watersheds, especially on slopes, damp a

Yellow fever mosquito (Aedes aegypti) use thermal infrared to navigate hosts

NEWS - Aedes aegypti transmits the viruses that cause dengue, yellow fever, Zika and other diseases every year, while Anopheles gambiae transmits the parasite that causes malaria. Their capacity to transmit disease has made mosquitoes the deadliest animals. Moreover, climate change and global travel have expanded the range of A. aegypti beyond tropical geography. The mosquitoes are now present in subtropical climates that were previously unheard of just a few years ago. Male mosquitoes are harmless, but females need blood for egg development. There is no single cue that these insects rely on to feed; they integrate information from many different senses across a wide range of distances. " A. aegypti very adept at finding human hosts. This work provides a new insight into how they achieve this. Once we got all the right parameters, the results were clear and undeniable," says Nicolas DeBeaubien of the University of California at Santa Barbara UCSB. The researchers added

Banded dragonfish (Akarotaxis gouldae) diverged from Akarotaxis nudiceps 780,000 years ago

NEWS - A new species of dragonfish, Akarotaxis gouldae or banded dragonfish, off the western Antarctic Peninsula by researchers at the Virginia Institute of Marine Science at Gloucester Point, the University of Oregon at Eugene, and the University of Illinois at Urbana-Champaign, highlights the unknown biodiversity and fragile ecosystems of the Antarctic. A. gouldae was named in honor of the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould and crew. The larval specimen was collected while trawling for zooplankton and was initially thought to be the closely related Akarotaxis nudiceps hundreds of thousands of years ago. DNA comparisons with A. nudiceps specimens held in collections at the Virginia Institute of Marine Science, Yale University, and the Muséum national d’Histoire naturelle in Paris showed significant variation in mitochondrial genes that suggested the larval sample was a distinct species. Andrew Corso of the Virginia Institute of Marine Science and colle

A deep-sea isopod Bathyopsurus nybelini adapted to feed submerged Sargassum algae

NEWS - Incredible footage shows a marine species, Bathyopsurus nybelini , feeding on something that sinks from the ocean’s surface. Researchers using the submersible Alvin found the isopod swimming 3.7 miles down using its paddle-like legs to catch an unexpected food source: Sargassum. Researchers from Woods Hole Oceanographic Institution (WHOI), the University of Montana, SUNY Geneseo, Willamette University and the University of Rhode Island found the algae sinking, while the isopod waited and adapted specifically to find and feed on the sinking nutrient source. The Sargassum lives on the surface for photosynthesis. The discovery of a deep-sea animal that relies on food that sinks from the waters miles above underscores the close relationship between the surface and the deep. “It’s fascinating to see this beautiful animal actively interacting with sargassum, so deep in the ocean. This isopod is extremely rare; only a handful of specimens were collected during the groundbreaking Swedis