Skip to main content

Two bacteria in stomach of fish become factories for moisturizing and anti-aging skin products

NEWS - Scientists using intestines of red seabream (Pagrus major) and blackhead seabream (Acanthopagrus schlegelii) as factories for cosmetics and skincare products. A team of researchers in South Korea used two bacteria, Ruegeria atlantica and Pseudoalteromonas neustonica, that live in the guts of the fish to produce skin moisturizers and anti-aging products.

Two bacteria in stomach of fish become factories for moisturizing and anti-aging skin products

Some of the strangest ingredients in cosmetics and skincare products, like snail slime, have been used for their moisturizing and antioxidant properties. Now, Chung Sub Kim, Hyo-Jong Lee and colleagues from Sungkyunkwan University in Suwon have found an even stranger one to put on your face.

Compounds from molecules made by the bacteria R. atlantica and P. neustonica that live in the guts of P. major and A. schlegelii fish, isolated in cultured cells have skin-brightening and anti-wrinkle properties. Potential ingredients for your future skincare routine.

Many important drugs come from strange places, including antibiotic penicillin, which was discovered after a failed experiment went moldy. The brain cancer drug candidate Marizomib comes from microbes dug up in seabed sediment. Last week, researchers reported the parasitic stomach worm Heligmosomoides polygyrus produces protein that smooths skin.

Two potentially untapped sources of new compounds are gut microbes from red seabream and blackhead seabream, fish found in the western Pacific Ocean. No studies have been done on the compounds they make, despite the microbes being identified in 1992 and 2016, respectively.

The team identified 22 molecules made by the two bacteria and their ability to inhibit the enzymes tyrosinase and collagenase in mouse cells. Tyrosinase is involved in the production of melanin, which causes hyperpigmentation in aging skin, while collagenase breaks down the structural protein collagen, which causes wrinkles.

The bacterial molecules inhibited both enzymes well without damaging the cells. Furthermore, the compounds tested showed no significant antibacterial activity against Escherichia coli and Bacillus subtilis at up to 100 μM. These results indicate that compound can be developed into a cosmetic with anti-wrinkle and skin lightening effects.

Original research

Jonghwan Kim, Su Jung Hwang, Gyu Sung Lee, Ju Ryeong Lee, Hye In An, Hong Sik Im, Minji Kim, Sang-Seob Lee, Hyo-Jong Lee, and Chung Sub Kim. Collagenase and Tyrosinase Inhibitory Compounds from Fish Gut Bacteria Ruegeria atlantica and Pseudoalteromonas neustonica. ACS Omega 2024 9 (32), 34259-34267, DOI:10.1021/acsomega.3c09585

Popular Posts

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...

Asian palmyra palm (Borassus flabellifer)

Asian palmyra palm ( Borassus flabellifer ) is a species of Arecaceae , palm, sturdy, single-stemmed, cylindrical shape, growing 15-30 meters tall and with a trunk diameter of about 60 cm. The leaves are clustered at the tip of the trunk, forming a rounded crown . The leaf blade resembles a round fan , up to 1.5 meters in diameter. The leaflets are 5-7 cm wide, and the underside is whitish with a waxy coating. The leaf stalk is up to 1 meter long, with a broad, black midrib at the top and a row of two-pointed spines . The inflorescence is borne on a cob, 20-30 cm long, and the stalk is about 50 cm long. The fruits are clustered in clusters of about 20, round, 7-20 cm in diameter, with a brownish-black outer skin and yellow flesh on the inside. The fruit has three seeds in a thick, hard shell. Kingdom: Plantae Phylum: Tracheophyta Subphylum: Angiospermae Class: Liliopsida Order: Arecales Family: Arecaceae Subfamily: Coryphoideae Tribe: Borasseae Subtribe: Lataniinae Genu...

Javan mocca or Javan slender caesar (Amanita javanica)

OPINION - Javan mocca or Javan slender caesar ( Amanita javanica ) is a mysterious fungus species and has been enigmatic since it was first reported by Boedijn in 1951 and after that no explanation or reporting of specimens is believed to be the same as expected. Boedijn (1951) described A. javanica which grew on Java island as having the characteristics covered in the Amanita genus. Corner and Bas in 1962 tried to describe Javan mocca and all species in Amanita based on specimens in Singapore. Over time some reports say that they have found A. javanica specimens in other Southeast Asia including also China, Japan, India and Nepal. But there is no definitive knowledge and many doubt whether the specimen is the same as described by Boedijn (1951). I was fortunate to have seen this species one afternoon and soon I took out a camera for some shots. In fact, I've only met this mushroom species once. Javan mocca is an endangered species and I have never seen in my experience in...