Skip to main content

Two bacteria in stomach of fish become factories for moisturizing and anti-aging skin products

NEWS - Scientists using intestines of red seabream (Pagrus major) and blackhead seabream (Acanthopagrus schlegelii) as factories for cosmetics and skincare products. A team of researchers in South Korea used two bacteria, Ruegeria atlantica and Pseudoalteromonas neustonica, that live in the guts of the fish to produce skin moisturizers and anti-aging products.

Two bacteria in stomach of fish become factories for moisturizing and anti-aging skin products

Some of the strangest ingredients in cosmetics and skincare products, like snail slime, have been used for their moisturizing and antioxidant properties. Now, Chung Sub Kim, Hyo-Jong Lee and colleagues from Sungkyunkwan University in Suwon have found an even stranger one to put on your face.

Compounds from molecules made by the bacteria R. atlantica and P. neustonica that live in the guts of P. major and A. schlegelii fish, isolated in cultured cells have skin-brightening and anti-wrinkle properties. Potential ingredients for your future skincare routine.

Many important drugs come from strange places, including antibiotic penicillin, which was discovered after a failed experiment went moldy. The brain cancer drug candidate Marizomib comes from microbes dug up in seabed sediment. Last week, researchers reported the parasitic stomach worm Heligmosomoides polygyrus produces protein that smooths skin.

Two potentially untapped sources of new compounds are gut microbes from red seabream and blackhead seabream, fish found in the western Pacific Ocean. No studies have been done on the compounds they make, despite the microbes being identified in 1992 and 2016, respectively.

The team identified 22 molecules made by the two bacteria and their ability to inhibit the enzymes tyrosinase and collagenase in mouse cells. Tyrosinase is involved in the production of melanin, which causes hyperpigmentation in aging skin, while collagenase breaks down the structural protein collagen, which causes wrinkles.

The bacterial molecules inhibited both enzymes well without damaging the cells. Furthermore, the compounds tested showed no significant antibacterial activity against Escherichia coli and Bacillus subtilis at up to 100 μM. These results indicate that compound can be developed into a cosmetic with anti-wrinkle and skin lightening effects.

Original research

Jonghwan Kim, Su Jung Hwang, Gyu Sung Lee, Ju Ryeong Lee, Hye In An, Hong Sik Im, Minji Kim, Sang-Seob Lee, Hyo-Jong Lee, and Chung Sub Kim. Collagenase and Tyrosinase Inhibitory Compounds from Fish Gut Bacteria Ruegeria atlantica and Pseudoalteromonas neustonica. ACS Omega 2024 9 (32), 34259-34267, DOI:10.1021/acsomega.3c09585

Popular Posts

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...

False nettle (Boehmeria cylindrica)

False nettle ( Boehmeria cylindrica ) is a species of plant in the Urticaceae family, a herb or small shrub, up to 160 cm tall, usually monoecious but rarely dioecious. The leaves are paired or alternate, and the inflorescence is a spikelet with a cluster of small bracts at the tip. B. cylindrica generally grows to a height of 50-100 cm. Spine-like hairs form in the leaf axils. The leaves are oval and up to 10 cm long and 4 cm wide. The flowers are green or greenish-white and emerge from the upper leaf axils. Male and female flowers usually grow on separate plants. Male flowers are more numerous among the spikes in clusters. Female flowers are less evenly distributed along the spikes. The small, oval seeds are covered with small, hook-like hairs. Ripe seeds are dark brown. The inflorescence resembles a spike and is up to 3 cm long. This species can be found in moist to mesic deciduous forest habitats, growing abundantly along streambanks, floodplains, and lowlands. B. cylindrica is ...

Alexandrian Laurel (Calophyllum inophyllum)

Alexandrian Laurel ( Calophyllum inophyllum ) is a species of plant in the Calophyllaceae family. It is a low-branching, slow-growing, spreading tree with a wide, irregular crown. It grows up to 30 meters tall, has a cylindrical trunk, and thick, black, and fissured bark. The leaves are thick, oval, with rounded tips, even margins, and a smooth surface. The upper side is dark green and glossy, the underside is bright green, with a central vein in bright green. The leaves are up to 27 cm long, 13 cm wide, and have a 1 cm petiole. Flowers bloom throughout the year, but typically from April to June and October to December. Flowers are 30 mm in diameter and occur in racemose or paniculate inflorescences of four to 15 flowers. The flowers have a sweet aroma and attract numerous pollinating insects. The fruit is round, green, up to 4 cm in diameter, with a large seed in the center. When ripe, the fruit wrinkles and turns yellow to brownish. The fruit is light, with thin, spongy flesh and a...