Skip to main content

Hand and foot morphology maps invasion of terrestrial environments by pterosaurs in the mid-Mesozoic

Hand and foot morphology maps invasion of terrestrial environments by pterosaurs in the mid-Mesozoic

NEWS - Pterosaurs, the first true flying vertebrates, played a significant role in Mesozoic terrestrial ecosystems from about 252–66 million years ago. However, our understanding of their ability to move on land more broadly and their terrestrial paleoecology is limited.

The researchers show a remarkably high degree of variation in pterosaur hands and feet, comparable to that observed in birds today, suggesting that pterosaurs adapted to a wide range of non-aerial locomotor ecologies throughout history.

Early small-bodied, long-tailed (non-pterodactyliform) pterosaurs exhibited extreme modifications in hand and foot proportions indicative of a climbing lifestyle. In contrast, the hands and feet of short-tailed (pterodactyliform) pterosaurs typically exhibit morphology consistent with a more terrestrial locomotor ecology.

"Early pterosaurs were highly specialised for climbing with modifications to their hands and feet, similar to today's climbing lizards and woodpeckers. Holding on to a vertical surface using the fingertips for long periods of time is a difficult task, much easier for small, light animals," says Robert Smyth of the University of Leicester.

This change in proportions correlates with other modifications to pterosaur anatomy, in particular, the separation along the midline of the flight membrane (cruropatagium) that connected the hind limbs and enabled much more effective locomotory abilities on the ground.

Together, these changes map out a key event in tetrapod evolution in the mid-Mesozoic colonisation of terrestrial environments by short-tailed pterosaurs.

"The hind limbs connected by a flight membrane would have constrained walking and running in early pterosaurs. In more advanced pterosaurs, this membrane separated along the midline allowing each hind limb to move independently," says David Unwin of the University of Leicester.

"This was a major innovation that, combined with changes to their hands and feet, greatly increased the mobility of pterosaurs on land. Freed from the constraints of climbing, these later pterosaurs could grow to enormous sizes, with some species becoming true giants in the Mesozoic," says Unwin.

This transition to a predominantly land-based locomotory ecology did not occur as a single event coinciding with the origin of short-tailed forms, but evolved independently in each of four major radiations: euctenochasmatians, ornithocheiroids, dsungaripteroids and azhdarchoids.

The invasion of terrestrial environments by pterosaurs facilitated the evolution of a wide range of new feeding ecologies, while freedom from the constraints imposed by climbing allowed the increase in body size that ultimately enabled the evolution of gigantism in a range of lineages.

"This finding underscores the need to study all aspects of pterosaurs, not just flight. Pterosaur flight is only one part of their story. By studying how they lived in trees and on the ground, we can begin to understand the role they played in ancient ecosystems," Smyth said.

Original research

Smyth, Robert S.H. et al. (2024). Hand and foot morphology maps invasion of terrestrial environments by pterosaurs in the mid-Mesozoic. Current Biology, DOI:10.1016/j.cub.2024.09.014

Dlium theDlium

Popular Posts

Elephant bell gourd (Trichosanthes tricuspidata)

Elephant bell gourd ( Trichosanthes tricuspidata ) is a plant species in the Cucurbitaceae, stems grow elongated to propagate or climb, many branches, cylindrical in shape and green in color. T. cochinchinensis has stem tips or branches that twist to attach themselves to a support or other plant. It grows to climb to cover a support, usually on another plant, up to several meters and creeps along the ground to reach another support. Arrow-shaped leaves, split base, sharp apex and two wings at an acute angle, have many veins ending at a sharp edge, green and have a long petiole. Single flower is white. The fruit is round to oval, ends with a tail, young green and turns red with maturity, thin skin, thick flesh and reddish yellow, has a short stalk and hangs. The seeds are in the middle of the fruit. Seeds are white, oval and flat. Black coated seeds. Elephant bell gourd grows wild in primary and secondary forests, agricultural land, roadsides, watersheds, especially on slopes, damp a

Dazzling rove beetle (Apecholinus speciosus) from Mangshan, Hunan, has similarity to Apecholinus imitator

NEWS - Dazzling rove beetle ( Apecholinus speciosus Sun & Liu, sp. nov.) from Mangshan, Hunan, China, has similarity to Apecholinus imitator Smetana & Hu 2019 and phylogenetic analysis based on mitochondrial genome showed the two species form a sister clade to Ocypus and Dinothenarus, all belonging to the Ocypus lineage. Apecholinus Bernhauer 1933 was established with Apecholinus kaiseri Bernhauer 1933 as the type species established by monotypy. So far, 7 species have been described and are found only in East Asia. Of these, 6 species are in mainland China and Taiwan, only one species is native to North Korea. They are A. aglaosemanticus (He & Zhou, 2017), A. canifer Smetana & Hu 2019, A. fraternus (Fairmaire, 1891), A. imitator Smetana & Hu 2019, A. kaiseri Bernhauer 1933, A. liui (He & Zhou, 2017) and A. septentrionalis Senda & Han 2023. Apecholinus is recognized by mandibles each having one simple tooth on the medial edge, no subdental mandibul

Soft scale insect, repens scale (Pulvinaria rhododendri), on Rhododendron spp. in Northern Europe

NEWS - Repens scale ( Pulvinaria rhododendri Kahrer & Hodgson, Hemiptera: Coccomorpha: Coccidae) was discovered in Rhododendron spp. (Ericaceae) in Denmark and Norway which appears taxonomically close to P. camelicola Signoret and P. floccifera Westwood with an uncertain geographic origin, but is likely to have been introduced to northern Europe via imported live plants. P. rhododendri is distinguished from P. floccifera , P. camelicola and all other Pulvinaria species by a combination of characters-a medial band of large conical spinous setae extending from the anal plate anterior to the head and simple pores with strongly sclerotic margins present in a narrow medial band between the large conical spinous setae. The new species also differs from P. floccifera by the presence of a type III tubular canal submarginally between the lateral stigmatic clefts (vs. absent). The species is named after the genus of the host plant from which it is most commonly collected, Rhododendron