Skip to main content

ID for permanent and unique individual specimen from natural history museums for efficient and future-proof science

ID for permanent and unique individual specimen from natural history museums for efficient and future-proof science

NEWS - The wealth of data held in natural history collections can contribute to global challenges ranging from climate change to biodiversity loss to pandemics. However, current practices for collecting biodiversity and geological specimens are inefficient, limiting scientists.

But there is a serious lack of linkage between data centered around specimens and that from multiple databases, creating significant obstacles when researchers try to work with specimens from multiple collections.

Now, a publication is the first to demonstrate a new workflow to better digitize and secure biodiversity data in the future. The paper revises two genera of jumping spiders from two collections and describes the newly discovered species using a new workflow and format: digital specimen DOIs and nanopublications.

DOIs

Several initiatives have been launched in recent years to establish a globally accepted system of persistent identifiers (PIDs) that guarantee the “uniqueness” of a collection’s specimens, physical or digital, over time.

PIDs are markers, identifiers that point to a single object and distinguish it from any other object in the world. They’re acronyms like ISBN or ORCID. For digital research content, the most widely used PID is the DOI (Digital Object Identifier) proposed by the DOI Foundation.

A DOI is an alphanumeric code that looks like this: 10.prefix/sufix, if you type https://doi.org/10.15468/w6ubjx in your browser, you will open the Royal Belgian Institute of Natural Sciences mollusc collection database accessed through GBIF. This specific DOI will never point to anything else and will remain the same in the future, even if the database content changes.

DiSSCo and DOIs

The Distributed System of Scientific Collections (DiSSCo) aims to provide DOIs for all individual digital specimens in European natural history collections. This is important, but DOIs for digital specimens provide a number of other revolutionary and very interesting advantages for DiSSCo and natural history collections in general. Among them.

Firstly, the use of DOIs allows linking digital specimens to all other relevant information about the same specimen that may be stored in other repositories (ecological data, genomic data, etc.). These expanded digital specimens link different types of data and the DOIs of digital specimens make a major contribution to inter-institutional scientific work. Scientists will be in a much better position to truly exchange and link data across institutions.

Second, digital specimen DOIs store additional metadata (name, catalog number, etc.) beyond the intended URL that allows access to some information about the specimen without having to retrieve the full data object. This metadata makes it easier for AI systems to quickly navigate billions of digital specimens and perform a variety of automated tasks.

Use of DOIs in publications

So far, the only DOIs that can be used in publications are DOIs at the dataset level, not at the individual specimen level. If a scientist publishes an article about a particular type of bivalve in a Belgian collection, the only DOI available to cite in the article is the DOI of the entire mollusc database containing hundreds or thousands of specimens, not the DOI of the particular specimen that might be the focus of the publication.

The publication in the Biodiversity Data Journal of the genera Chrysilla and Phintelloides was the first of its kind and opened the door to citing not only dataset-level objects but also individual specimens in publications using DOIs. There you can also comment, annotate specimens and much more, making science more dynamic and efficient than ever before.

Original research

Deeleman-Reinhold CL, Addink W, Miller JA (2024) The genera Chrysilla and Phintelloides revisited with the description of a new species (Araneae, Salticidae) using digital specimen DOIs and nanopublications. Biodiversity Data Journal 12: e129438, DOI:10.3897/BDJ.12.e129438

Dlium theDlium

Popular Posts

Sandbox tree (Hura crepitans)

Sandbox tree ( Hura crepitans ) is species in Euphorbiaceae, a tropical tree, growing up to 60 meters tall and with a trunk circumference of up to 13.2 meters, the trunk is covered with long and sharp thorns and exudes a poisonous sap. H. crepitans has large, oval leaves, 15 cm wide and 20 cm long. The petioles are 22 cm long. The flowers are red and lack petals. Male flowers grow on long stalks, while female flowers grow singly in leaf axils. The fruit is a large, flask-shaped capsule, up to 10 cm in diameter, with 12-16 radially arranged carpels. The seeds are flat and about 2 cm in diameter. The capsule bursts when ripe, dividing into segments and ejecting the seeds at a speed of 70 m/s, a distance of 30-100 meters. This tree prefers moist soil and partial shade or partial to full sun, a warm, humid environment. It is often cultivated for shade. The wood is light and used to make canoes. The sap is used to poison fish. Kingdom: Plantae Phylum: Tracheophyta Subphylum: Angiosperma...

Fivefingers (Syngonium angustatum)

Donglimo or fivefingers ( Syngonium angustatum ) is species in Araceae, epiphytes, grow to climb large trees up to 20 meters high, produce milky sap, dark green, internodes up to 50 cm long, petioles up to 35 cm long, green and live in areas tropical. S. angustatum has roots in the soil to absorb nutrients and air roots that grow in each segment to attach themselves to a support. Wild plants that live in forests often cause trees to be uprooted by heavy loads. The main stem produces a row of stems, up to 60 cm with the ends of a group of leaves with 3-7 separate leaflets, but connected by horizontal stems. The middle leaf has a length of up to 25 cm and a width of up to 12 cm. The flower has a veil, round in shape and a pointed tip, green and facing up with a stalk up to 15 cm long. The head of the pistil is tubular, stands 3-5 cm long and is white. The fruit is in a veil, rounded with a pointed tip and green when young to turn bright red when ripe and grow on the tip of the ...

Bitter melon (Momordica charantia)

Pare or bitter melon ( Momordica charantia ) is a plant species in Cucurbitaceae, grows climbing or spreads with spiral-shaped tendrils, many branches, long fruit and jagged surface, grows well in tropical regions and is usually cultivated for vegetables and medicinal ingredients. M. charantia has green stems with white hairs. Single leaf stemmed and arranged alternately, length 3.5-8.5 cm, width 4 cm, divided into 5-7 fins with many bones, heart-shaped base, green, wrinkled surface and jagged margins. A single flower has a stalk, male and female flowers in the tree, the crown has five fins and is yellow. The fruit is long oval shaped, has 8-10 linear ribs, irregular nodules, 6-30 cm long depending on subspecies and varieties, bitter taste, young green, ripe to orange and broken with three parts. Bitter melon has several subpsecies including Momordica charantia macroloba , Momordica charantia charantia and Momordica charantia abbreviata . Some varieties include Momordica charantia ...