Skip to main content

Sónia Ferreira water mite (Torrenticola soniae) and Elisabeth Stur water mite (Torrenticola elisabethae) as new to science

Sónia Ferreira water mite (Torrenticola soniae) and Elisabeth Stur water mite (Torrenticola elisabethae) as new to science

NEWS - The research team reports Sónia Ferreira water mite (Torrenticola soniae Pešić, sp. nov.) and Elisabeth Stur water mite (Torrenticola elisabethae Pešić, sp. nov.) as new to science and the first results of the analysis of water mites collected in Portugal as part of the Biodiversity Genomics Europe project.

Knowledge about water mites in Portugal is still inadequate. The checklist includes 93 species from 34 genera and 16 families for Portugal and summarizes all previous studies on water mites in Portugal and its islands. Recently, Vladimir Pešić from the University of Montenegro, added 7 new species to the Portuguese water mite fauna.

T. soniae has a relatively short, anteriorly broad Cx-I; suture lines of Cx-IV prominent, starting at right angle from genital field; ejaculatory complex with well-developed anterior keel and proximal arms; gnathosomal rostrum short, less than width of gnathosoma; P-3 with a subrectangular, apically serrated ventrodistal projection. This lineage is represented by a unique BIN that differs from the T. brevirostris clade by 12.27% K2P for COI.

Idiosoma roundish; dorsal shield without a color pattern; area of primary sclerotization of the dorsal plate with two dorsoglandularia; frontal platelets broad, relatively short; Cx-I relatively short, anteriorly broad; gnathosomal bay U-shaped, proximally rounded; Cxgl-4 subapical; medial suture line of Cx-II+III relatively short.

Postgenital area extended; excretory pore and Vgl-2 away from the line of primary sclerotization, excretory pore on the level of Vgl-2; gnathosomal rostrum short, less than depth of gnathosoma; P-2 ventral margin nearly straight or slightly convex, P-2 ventrodistal protrusion bluntly pointed, apically serrated, P-3 with a subrectangular, apically serrated ventrodistal projection, P-4 with a ventral tubercle bearing one long and three shorter setae.

Male: Suture line of Cx-IV evident, medially starting from posterior margin of genital field in a right angle to the main idiosoma axis; genital fields large, subrectangular; ejaculatory complex conventional in shape, anterior keel, proximal and distal arms well developed. Female: Genital field large and pentagonal in shape, suture lines of Cx-IV extending posteriorly beyond posterior margin of genital field, laterally curved.

Male (holotype): Idiosoma (ventral view: Fig. 1B) L 912, W 669; dorsal shield L 756, W 581, L/W ratio 1.3; dorsal plate L 700; shoulder plate L 220–222, W 97, L/W ratio 2.27–2.29; frontal plate L 150–156, W 78–88, L/W ratio 1.8–1.9; shoulder/frontal plate L 1.42–1.47.

Gnathosomal bay L 171, Cx-I total L 359, Cx-I mL 188, Cx-II+III mL 137; ratio Cx-I L/Cx-II+III mL 2.63; Cx-I mL/Cx-II+III mL 1.37. Genital field L/W 191/163, ratio 1.17; distance genital field-excretory pore 116, genital field-caudal idiosoma margin 209. Ejaculatory complex L 291. Gnathosoma vL 331, chelicera L 375; palp total L 398, dL/H, dL/H ratio: P-1, 39/39, 1.0; P-2, 117/73, 1.59; P-3, 84/63, 1.35; P-4, 120/42, 2.86; P-5, 38/17, 2.18; L ratio P-2/P-4, 0.98. dL of I-L-4–6: 134, 150, 136; I-L-6 H 100; dL/H I-L-6 ratio 1.36.

Female (paratype): Idiosoma (ventral view: Fig. 2C) L 1033, W 828; dorsal shield L 844, W 725, L/W ratio 1.16; dorsal plate L 781; shoulder plate L 222–235, W 100–102, L/W ratio 2.2–2.3; frontal plate L 173–175, W 97–98, L/W ratio 1.79; shoulder/frontal plate L 1.28–1.34.

Gnathosomal bay L 200, Cx-I total L 384, Cx-I mL 184, Cx-II+III mL 18; ratio Cx-I L/Cx-II+III mL 21.3; Cx-I mL/Cx-II+III mL 10.2. Genital field L/W 221/198, ratio 1.12; distance genital field-excretory pore 250, genital field-caudal idiosoma margin 391. Gnathosoma vL 350, chelicera L 409; palp total L 435, dL/H, dL/H ratio: P-1, 44/41, 1.08; P-2, 127/76, 1.67; P-3, 93/65, 1.44; P-4, 134/42, 3.18; P-5, 37/18, 2.0; L ratio P-2/P-4, 0.94.

The COI tree sequences derived from the specimens appear as a sister group to the sequence cluster belonging to T. brevirostris (Halbert, 1911), a rhitrobiont species widely distributed in Europe. The average genetic distance between the COI sequences of these two clusters was estimated to be 12.27 ± 1.42% K2P.

This genetic distance is much higher than the estimated barcoding gap found by ASAP analysis (3–5%) of all Torrenticola studied supporting the species status of the new taxon. The average intraspecific K2P divergence within the new species cluster was 0.63 ± 0.19%.

With respect to the presence of a wide and short Cx-I anteriorly, strong and compact palps, and a deep gnathosoma with a short rostrum, the new species resembles T. brevirostris, but can be distinguished by the slightly prominent ventrodistal projection of P-2 and especially P-3.

T. elisabethae has shoulder platelets fused with dorsal plate; dorsal shield with color pattern; Cxgl–4 subapical; medial suture line of Cx-II+III in male relatively long; ejaculatory complex with poorly developed anterior keel and a relatively large proximal chamber. This lineage represents a unique BIN differing from T. lundbladi clade by 9.8% K2P for COI.

Idiosoma oval; shoulder platelets fused to dorsal plate, but suture line visible; dorsal shield with a color pattern; area of primary sclerotization of the dorsal plate with four dorsoglandularia; gnathosomal bay U-shaped, proximally rounded; Cxgl–4 subapical.

Excretory pore and Vgl-2 at the line of primary sclerotization, excretory pore at the level of Vgl-2; gnathosomal ventral margin curved, rostrum elongated; P-2 ventral margin nearly straight or slightly concave, P-2 and P-3 ventrodistal protrusions bluntly pointed, P-4 with a ventral tubercle bearing one long and three shorter setae.

Male - Medial suture line of Cx-II+III relatively long; subrectangular genital fields; ejaculatory complex with poorly developed anterior keel, proximal chamber relatively large. Female - Genital field large and pentagonal in shape.

Male (holotype): Idiosoma (ventral view) L 856, W 691; dorsal shield L 731, W 619, L/W ratio 1.18; dorsal plate L 681; frontal plate L 173–183, W 64–66, L/W ratio 2.7–2.8. Gnathosomal bay L 194, Cx-I total L 383, Cx-I mL 188, Cx-II+III mL 131; ratio Cx-I L/Cx-II+III mL 2.92; Cx-I mL/Cx-II+III mL 1.43.

Genital field L/W 183/150, ratio 1.22; distance genital field-excretory pore 103, genital field-caudal idiosoma margin 127. Ejaculatory complex L 275. Gnathosoma vL 367, chelicera L 448; palp total L 390, dL/H, dL/H ratio: P-1, 44/38, 1.17; P-2, 133/64, 2.08; P-3, 79/58, 1.36; P-4, 112/38, 2.98; P-5, 14/22, 1.55; L ratio P-2/P-4, 1.19. dL of I-L-4–6: 145, 160, 131; I-L-6 H 46; dL/H I-L-6 ratio 2.85.

Female (paratype): Idiosoma (ventral view) L 975, W 794; dorsal shield L 806, W 663, L/W ratio 1.22; dorsal plate L 766; frontal plate L 172–175, W 63–68, L/W ratio 2.6–2.75. Gnathosomal bay L 203, Cx-I total L 391, Cx-I mL 188, Cx-II+III mL 0. Genital field L/W 214/204, ratio 1.05; distance genital field-excretory pore 256, genital field-caudal idiosoma margin 347. Egg (n = 1) maximum diameter 227.

Gnathosoma vL 379, chelicera L 478; palp total L 389, dL/H, dL/H ratio: P- 1, 41/36, 1.15; P-2, 130/64, 2.0; P-3, 80/59, 1.35; P-4, 116/40, 2.87; P-5, 22/14, 1.55; L ratio P-2/P-4, 1.13.

The sequences taken from the specimen appear to be a sister group to the cluster containing sequences of T. lundbladi (K. Viets, 1930), a rhitrobiont species known from Spain. The average K2P genetic distance COI sequences was estimated to be 9.8 ± 1.25%. This is higher than the barcode gap found for Torrenticola in the ASAP analysis. The average intraspecific divergence within the barcode group T. elisabethae is relatively low (0.2 ± 0.14% K2P).

The new species is most similar to T. lundbladi K. Viets 1930 originally described from central Spain. Both species have a dorsal shield with partially fused shoulder plates with dorsal plate, similar dorsal shield color pattern, subapically located Cxgl-4 and relatively long median suture line Cx-II-III in males. However, T. lundbladi differs with the typical shape of the ejaculatory complex (short proximal and distal arms, large proximal chamber, reduced proximal horn).

T. soniae is dedicated to Sónia Ferreira for her collection of numerous specimens and her enthusiastic support in the research of Portuguese water mites. T. elisabethae is dedicated to Elisabeth Stur who facilitated a number of barcoding projects on water mites in Europe.

Original research

Pešić V, Zawal A, Ferreira S, Benitez-Bosco L, Cruz-Oliveira A, Girão D, Padilha A, Turaccio P, Rossini S, Ballini L, Staffoni G, Fratini S, Ciofi C, Iannucci A, Ekrem T, Stur E (2024). DNA barcode library of Portuguese water mites, with the descriptions of two new species (Acari, Hydrachnidia). ZooKeys 1217: 119-171, DOI:10.3897/zookeys.1217.131730

Dlium theDlium

Popular Posts

Tekijem (Cyperus cyperoides)

Tekijem ( Cyperus cyperoides ) is a plant species in Cyperaceae, annual grasses that grow in seasonal wetlands, open or shaded fields, swamps, ponds, rice fields, roadsides, open forests, secondary forests and shrubs at altitudes up to 1,800 m in the tropics. C. cyperoides has an upright, triangular shape, 20-75 cm tall from a very short rhizome and has no stolon. The lanceolate-shaped leaves are narrow and long, the tips are pointed, slippery, shiny, green and grow at the bottom and at the top of the stem. The terminal flower appears on the tip of the stem, cylindrical spiklet shaped and green. Each stem has two to seven flowers, each of which has a short or long stem that grows at the end of the stem together with the leaves. Tekijem grows solitary or in small groups at a distance. Propagating using vegetative and generative methods using seeds. At least three sub-species are Cyperus cyperoides cyperoides , Cyperus cyperoides flavus and Cyperus cyperoides pseudoflavus . Th...

Giant golden spider (Nephila pilipes)

Kemlanding or giant golden orbweaver ( Nephila pilipes ) is an animal species in the Araneidae, a web spider with a vertical and asymmetrical mesh, sexually dimorphic with elongated females up to 20 cm in size and has a large investment in egg production and web construction, whereas males only a few millimeters. N. pilipes displays female gigantism and male dwarfism. Females usually have a body size of 30-50 mm, the cephalothorax is 15 mm long and 10 mm wide. The stomach is 30 mm long, 15 mm wide and is mostly tawny with yellow stripes. The female has black or brown, covered in thick hairs. The two rows of eyes stick out towards the back. Plastron is mostly black and brown. The legs are very long, stick-shaped with several joints, black and yellow, lacking of hairs. Males are 5-6.5 mm in size, cephalothorax is 2.5 mm long and 2 mm wide. The stomach is 4 mm long and 1.5 mm wide. The front eye is bigger than the back eye. The legs are light brown with some hair. Yellow carapace with ...

Dry Valleys on Antarctic continent is the driest place in the world

The Sahara Desert is the largest desert in the world, rainfall is very low, only stretches of sand and rocks without rivers and plants further strengthen the view of drought. However, it turns out that the place is not the driest place in the world. Dry Valleys in Antarctica, although the continent is covered in ice, but has one part that is completely dry. Although the average rainfall in most of the Sahara Desert is less than 20 millimeters per year, there are still drier places. Dry Valleys in Antarctica is much drier where the average rainfall is 0 millimeters per year and gets the title of the driest place in the world. The valleys have so low humidity that there is almost no ice. This is the largest ice free place on the Antarctic continent. The area is surrounded by mountains that block ice from flowing into the valley. Drought is also caused by strong katabalic gusts from mountain peaks where cold air blows down the hill due to gravity. The wind has speeds of up to 322 k...