Skip to main content

Beta-cyclocitral makes tomato and rice roots grow faster and branch more

Scientists have identified the beta-cyclocitral hormone that makes tomato and rice roots grow faster and branch more. Molecules as fertilizer also have an underground role in helping to grow roots faster.

Scientists report findings in the Proceedings of the National Academy of Sciences where the addition of beta-cyclocitral molecules to the soil will accelerate the growth of the roots of rice and tomatoes. Rice plants are also resistant to salty soil.

Dlium Beta-cyclocitral makes tomato and rice roots grow faster and branch more

"For centuries, more attention has been paid to leaves and other properties that are easily visible. Because roots are hidden underground and have been neglected," said Philip Benfey of Duke University in Durham.

Benfey and colleagues in previous studies have suggested that some molecules that are chemically linked to carotenoids, pigments that give orange carrots, may be important. But the researchers are not sure exactly which.

Many of these carotenoid relatives have been rearranged and are commercially available as food additives or supplements. Alexandra Dickinson from Duke University tested Arabidopsis by adding each compound to the gel to make it clear where the roots grew and monitor what happened for 10 days.

"Beta-cyclocitral stands out," Dickinson said.

Roots grow faster and also branch more and the same effect occurs in rice and tomatoes. Rice plants can also live in salty soil. Untreated rice plants are very unhappy with the level of salt, but the addition of beta-cyclocitral makes the plants undisturbed.

It is likely that the compound helps the roots push down through salty soil layers to reach deeper and less salty soils. The researchers hope that beta-cyclocitral can be added to the soil or sprayed onto plants and encourage root growth in wider plants.

Journal : Alexandra J. Dickinson et al. β-Cyclocitral is a conserved root growth regulator, PNAS, May 8, 2019, DOI:10.1073/pnas.1821445116

Popular Posts

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...

Alexandrian Laurel (Calophyllum inophyllum)

Alexandrian Laurel ( Calophyllum inophyllum ) is a species of plant in the Calophyllaceae family. It is a low-branching, slow-growing, spreading tree with a wide, irregular crown. It grows up to 30 meters tall, has a cylindrical trunk, and thick, black, and fissured bark. The leaves are thick, oval, with rounded tips, even margins, and a smooth surface. The upper side is dark green and glossy, the underside is bright green, with a central vein in bright green. The leaves are up to 27 cm long, 13 cm wide, and have a 1 cm petiole. Flowers bloom throughout the year, but typically from April to June and October to December. Flowers are 30 mm in diameter and occur in racemose or paniculate inflorescences of four to 15 flowers. The flowers have a sweet aroma and attract numerous pollinating insects. The fruit is round, green, up to 4 cm in diameter, with a large seed in the center. When ripe, the fruit wrinkles and turns yellow to brownish. The fruit is light, with thin, spongy flesh and a...

Thomas Sutikna lives with Homo floresiensis

BLOG - On October 28, 2004, a paper was published in Nature describing the dwarf hominin we know today as Homo floresiensis that has shocked the world. The report changed the geographical landscape of early humans that previously stated that the Pleistocene Asia was only represented by two species, Homo erectus and Homo sapiens . The report titled "A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia" written by Peter Brown and Mike J. Morwood from the University of New England with Thomas Sutikna, Raden Pandji Soejono, Jatmiko, E. Wahyu Saptomo and Rokus Awe Due from the National Archaeology Research Institute (ARKENAS), Indonesia, presents more diversity in the genus Homo. “Immediately, my fever vanished. I couldn’t sleep well that night. I couldn’t wait for sunrise. In the early morning we went to the site, and when we arrived in the cave, I didn’t say a thing because both my mind and heart couldn’t handle this incredible moment. I just went down...