Skip to main content


Redflower ragleaf (Crassocephalum crepidioides)

Sintrong or ebolo or thickhead or redflower ragleaf (Crassocephalum crepidioides) are plant species in Asteraceae, terma height 25-100 cm, white fibrous roots, generally grow wild on the roadside, yard gardens or abandoned lands at altitude 200- 2500 m.

C. crepidioides has erect or horizontal stems along the soil surface, vascular, soft, non-woody, shallow grooves, green, rough surface and short white hair, aromatic fragrance when squeezed. Petiole is spread on stems, tubular and eared.

Dlium Redflower ragleaf (Crassocephalum crepidioides)

Single leaf, spread out, green, 8-20 cm long, 3-6 cm wide, longitudinal or round inverted eggshell with a narrow base along the stalk. Pointed tip, flat-edged or curved to pinnate, jagged rough and pointed. The top leaves are smaller and often sit.

Compound flowers grow throughout the year in humps that are arranged in terminal flat panicles and androgynous. Green cuffs with orange-brown to brick-red tips, cylindrical for 13-16 mm long and 5-6 mm wide.

The crown is yellow with a brownish red tip and has five steps. The anthers and pistils are purple and the petals close together. The blooms will be tubular, green and nod down but erect after becoming a fruit.

The fruit is hard, slender elongated, has 10 ribs, 2.5 mm long with many fine brush hairs and is white to 9-12 mm long. The seeds spread by riding in the wind and traveling long distances.



Redflower ragleaf is often found in fertile wastelands, river banks, roadsides, tea and quinine plantations, especially in damp areas. Also in the dry fields. This plant is identified as a bi-season weed that is easily overcome.

Sintrong is thought to contain pyrolizidine alkaloids which can trigger tumors, but traditional societies utilize them as vegetables and animal feed. Some parts of the plant are used to treat stomach disorders, headaches, wounds, hemostasis, tonic, laxatives, fever, tonsillitis and eczema.

Kingdom: Plantae
Phylum: Tracheophyta
Subphylum: Angiospermae
Class: Magnoliopsida
Order: Asterales
Family: Asteraceae
Subfamily: Asteroideae
Tribe: Senecioneae
Subtribe: Senecioninae
Genus: Crassocephalum
Species: Crassocephalum crepidioides

Popular Posts

Elephant bell gourd (Trichosanthes tricuspidata)

Elephant bell gourd ( Trichosanthes tricuspidata ) is a plant species in the Cucurbitaceae, stems grow elongated to propagate or climb, many branches, cylindrical in shape and green in color. T. cochinchinensis has stem tips or branches that twist to attach themselves to a support or other plant. It grows to climb to cover a support, usually on another plant, up to several meters and creeps along the ground to reach another support. Arrow-shaped leaves, split base, sharp apex and two wings at an acute angle, have many veins ending at a sharp edge, green and have a long petiole. Single flower is white. The fruit is round to oval, ends with a tail, young green and turns red with maturity, thin skin, thick flesh and reddish yellow, has a short stalk and hangs. The seeds are in the middle of the fruit. Seeds are white, oval and flat. Black coated seeds. Elephant bell gourd grows wild in primary and secondary forests, agricultural land, roadsides, watersheds, especially on slopes, damp a

Banded dragonfish (Akarotaxis gouldae) diverged from Akarotaxis nudiceps 780,000 years ago

NEWS - A new species of dragonfish, Akarotaxis gouldae or banded dragonfish, off the western Antarctic Peninsula by researchers at the Virginia Institute of Marine Science at Gloucester Point, the University of Oregon at Eugene, and the University of Illinois at Urbana-Champaign, highlights the unknown biodiversity and fragile ecosystems of the Antarctic. A. gouldae was named in honor of the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould and crew. The larval specimen was collected while trawling for zooplankton and was initially thought to be the closely related Akarotaxis nudiceps hundreds of thousands of years ago. DNA comparisons with A. nudiceps specimens held in collections at the Virginia Institute of Marine Science, Yale University, and the Muséum national d’Histoire naturelle in Paris showed significant variation in mitochondrial genes that suggested the larval sample was a distinct species. Andrew Corso of the Virginia Institute of Marine Science and colle

Yellow fever mosquito (Aedes aegypti) use thermal infrared to navigate hosts

NEWS - Aedes aegypti transmits the viruses that cause dengue, yellow fever, Zika and other diseases every year, while Anopheles gambiae transmits the parasite that causes malaria. Their capacity to transmit disease has made mosquitoes the deadliest animals. Moreover, climate change and global travel have expanded the range of A. aegypti beyond tropical geography. The mosquitoes are now present in subtropical climates that were previously unheard of just a few years ago. Male mosquitoes are harmless, but females need blood for egg development. There is no single cue that these insects rely on to feed; they integrate information from many different senses across a wide range of distances. " A. aegypti very adept at finding human hosts. This work provides a new insight into how they achieve this. Once we got all the right parameters, the results were clear and undeniable," says Nicolas DeBeaubien of the University of California at Santa Barbara UCSB. The researchers added

Nactus simakal, gecko evolved in geomorphological habitat of Dauan Island

NEWS - Researchers report a new species of Nactus simakal that lives in a boulder-strewn habitat with deep crevices on Dauan Island in the northern Torres Strait. The Torres Strait Islands lie between Cape York Peninsula, north-eastern Australia, and the southern coast of Papua New Guinea and are rare in gecko biodiversity. The vertebrate fauna of the islands is a mix of Australian and New Guinean species with only two endemic species described to date. Conrad Hoskin of James Cook University in Townsville and colleagues describe the new species as highly distinctive based on ND2 mtDNA genetics and morphologically on its slender, elongated striped pattern. N. simakal is broadly similar to Nactus galgajuga (Ingram, 1978) which is restricted to a boulder-strewn habitat about 750 km to the south in mainland north-eastern Queensland, but is easily distinguished morphologically and genetically from saxicolines. N. simakal is the second vertebrate species to be described and considered