NEWS - How can lizards regrow their tails, salamanders regrow their arms and legs, and planarian worms even regrow their entire heads? Why don’t humans have the ability to regenerate lost body parts?
The evolution of regeneration is an ancient trait shared by our ancestors, but why have many species lost the ability over time? Did the evolution of regeneration evolve independently in different species?
Researchers from the University of California at Davis and the California Institute of Technology in Pasadena investigated the genomes of axolotls, zebrafish, sea anemones, sea sponges, and sea cucumbers, all of which have the ability to regenerate, but have evolved differently.
They used RNA-seq techniques to analyze datasets to capture snapshots of gene expression in regenerating tissue samples. However, they found that these snapshots were not enough to determine whether there were shared genes for regeneration. The genes that were detected were used for basic cellular processes such as cell division.
Each species uses a different combination of Wnt genes, and it is impossible to determine a shared set of Wnt genes to indicate a shared ancestor in regeneration. This research highlights the need for a deeper understanding of the complex developmental processes that underlie regeneration.
"RNA-seq is not good enough to identify processes that are conserved between distantly related things. Regeneration may be a process at another level, such as the cellular level, rather than the genetic level," says David Gold of the University of California, Davis.
The researchers suggest that the study of developmental biology is needed to truly understand the ancient evolutionary processes of each organism. The molecular history inherited from ancestors can help understand the mechanisms of biological regeneration, not just gene expression in species that exist today.
Original research
Noémie C Sierra, Noah Olsman, Lynn Yi, Lior Pachter, Lea Goentoro, David A Gold, A Novel Approach to Comparative RNA-Seq Does Not Support a Conserved Set of Orthologs Underlying Animal Regeneration, Genome Biology and Evolution, Volume 16, Issue 6, June 2024, DOI:10.1093/gbe/evae120
The evolution of regeneration is an ancient trait shared by our ancestors, but why have many species lost the ability over time? Did the evolution of regeneration evolve independently in different species?
Researchers from the University of California at Davis and the California Institute of Technology in Pasadena investigated the genomes of axolotls, zebrafish, sea anemones, sea sponges, and sea cucumbers, all of which have the ability to regenerate, but have evolved differently.
They used RNA-seq techniques to analyze datasets to capture snapshots of gene expression in regenerating tissue samples. However, they found that these snapshots were not enough to determine whether there were shared genes for regeneration. The genes that were detected were used for basic cellular processes such as cell division.
Each species uses a different combination of Wnt genes, and it is impossible to determine a shared set of Wnt genes to indicate a shared ancestor in regeneration. This research highlights the need for a deeper understanding of the complex developmental processes that underlie regeneration.
"RNA-seq is not good enough to identify processes that are conserved between distantly related things. Regeneration may be a process at another level, such as the cellular level, rather than the genetic level," says David Gold of the University of California, Davis.
The researchers suggest that the study of developmental biology is needed to truly understand the ancient evolutionary processes of each organism. The molecular history inherited from ancestors can help understand the mechanisms of biological regeneration, not just gene expression in species that exist today.
Original research
Noémie C Sierra, Noah Olsman, Lynn Yi, Lior Pachter, Lea Goentoro, David A Gold, A Novel Approach to Comparative RNA-Seq Does Not Support a Conserved Set of Orthologs Underlying Animal Regeneration, Genome Biology and Evolution, Volume 16, Issue 6, June 2024, DOI:10.1093/gbe/evae120