Skip to main content


Comparative RNA-Seq is not enough to reveal the evolution of regeneration

NEWS - How can lizards regrow their tails, salamanders regrow their arms and legs, and planarian worms even regrow their entire heads? Why don’t humans have the ability to regenerate lost body parts?

Comparative RNA-Seq is not enough to reveal the evolution of regeneration

The evolution of regeneration is an ancient trait shared by our ancestors, but why have many species lost the ability over time? Did the evolution of regeneration evolve independently in different species?

Researchers from the University of California at Davis and the California Institute of Technology in Pasadena investigated the genomes of axolotls, zebrafish, sea anemones, sea sponges, and sea cucumbers, all of which have the ability to regenerate, but have evolved differently.

They used RNA-seq techniques to analyze datasets to capture snapshots of gene expression in regenerating tissue samples. However, they found that these snapshots were not enough to determine whether there were shared genes for regeneration. The genes that were detected were used for basic cellular processes such as cell division.

Each species uses a different combination of Wnt genes, and it is impossible to determine a shared set of Wnt genes to indicate a shared ancestor in regeneration. This research highlights the need for a deeper understanding of the complex developmental processes that underlie regeneration.

"RNA-seq is not good enough to identify processes that are conserved between distantly related things. Regeneration may be a process at another level, such as the cellular level, rather than the genetic level," says David Gold of the University of California, Davis.

The researchers suggest that the study of developmental biology is needed to truly understand the ancient evolutionary processes of each organism. The molecular history inherited from ancestors can help understand the mechanisms of biological regeneration, not just gene expression in species that exist today.

Original research

NoƩmie C Sierra, Noah Olsman, Lynn Yi, Lior Pachter, Lea Goentoro, David A Gold, A Novel Approach to Comparative RNA-Seq Does Not Support a Conserved Set of Orthologs Underlying Animal Regeneration, Genome Biology and Evolution, Volume 16, Issue 6, June 2024, DOI:10.1093/gbe/evae120

Popular Posts

Thomas Sutikna lives with Homo floresiensis

BLOG - On October 28, 2004, a paper was published in Nature describing the dwarf hominin we know today as Homo floresiensis that has shocked the world. The report changed the geographical landscape of early humans that previously stated that the Pleistocene Asia was only represented by two species, Homo erectus and Homo sapiens . The report titled "A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia" written by Peter Brown and Mike J. Morwood from the University of New England with Thomas Sutikna, Raden Pandji Soejono, Jatmiko, E. Wahyu Saptomo and Rokus Awe Due from the National Archaeology Research Institute (ARKENAS), Indonesia, presents more diversity in the genus Homo. “Immediately, my fever vanished. I couldn’t sleep well that night. I couldn’t wait for sunrise. In the early morning we went to the site, and when we arrived in the cave, I didn’t say a thing because both my mind and heart couldn’t handle this incredible moment. I just went down

Elephant bell gourd (Trichosanthes tricuspidata)

Elephant bell gourd ( Trichosanthes tricuspidata ) is a plant species in the Cucurbitaceae, stems grow elongated to propagate or climb, many branches, cylindrical in shape and green in color. T. cochinchinensis has stem tips or branches that twist to attach themselves to a support or other plant. It grows to climb to cover a support, usually on another plant, up to several meters and creeps along the ground to reach another support. Arrow-shaped leaves, split base, sharp apex and two wings at an acute angle, have many veins ending at a sharp edge, green and have a long petiole. Single flower is white. The fruit is round to oval, ends with a tail, young green and turns red with maturity, thin skin, thick flesh and reddish yellow, has a short stalk and hangs. The seeds are in the middle of the fruit. Seeds are white, oval and flat. Black coated seeds. Elephant bell gourd grows wild in primary and secondary forests, agricultural land, roadsides, watersheds, especially on slopes, damp a

Yellow fever mosquito (Aedes aegypti) use thermal infrared to navigate hosts

NEWS - Aedes aegypti transmits the viruses that cause dengue, yellow fever, Zika and other diseases every year, while Anopheles gambiae transmits the parasite that causes malaria. Their capacity to transmit disease has made mosquitoes the deadliest animals. Moreover, climate change and global travel have expanded the range of A. aegypti beyond tropical geography. The mosquitoes are now present in subtropical climates that were previously unheard of just a few years ago. Male mosquitoes are harmless, but females need blood for egg development. There is no single cue that these insects rely on to feed; they integrate information from many different senses across a wide range of distances. " A. aegypti very adept at finding human hosts. This work provides a new insight into how they achieve this. Once we got all the right parameters, the results were clear and undeniable," says Nicolas DeBeaubien of the University of California at Santa Barbara UCSB. The researchers added

Nactus simakal, gecko evolved in geomorphological habitat of Dauan Island

NEWS - Researchers report a new species of Nactus simakal that lives in a boulder-strewn habitat with deep crevices on Dauan Island in the northern Torres Strait. The Torres Strait Islands lie between Cape York Peninsula, north-eastern Australia, and the southern coast of Papua New Guinea and are rare in gecko biodiversity. The vertebrate fauna of the islands is a mix of Australian and New Guinean species with only two endemic species described to date. Conrad Hoskin of James Cook University in Townsville and colleagues describe the new species as highly distinctive based on ND2 mtDNA genetics and morphologically on its slender, elongated striped pattern. N. simakal is broadly similar to Nactus galgajuga (Ingram, 1978) which is restricted to a boulder-strewn habitat about 750 km to the south in mainland north-eastern Queensland, but is easily distinguished morphologically and genetically from saxicolines. N. simakal is the second vertebrate species to be described and considered