Skip to main content

Pythons reprogram postprandial cardiac hypertrophy metabolism to stay healthy

NEWS - Wild cylindrical pythons, a few centimeters in diameter and several feet long, can stretch as long as a power pole and swallow a deer or crocodile whole. They fast for long periods of time, but when they eat large amounts of food, they don’t cause any tissue damage.

Pythons reprogram postprandial cardiac hypertrophy metabolism to stay healthy

In the first 24 hours after devouring a large prey item, the tissues soften dramatically, while the heart grows 25% and becomes more tense until the pulse rate doubles. The blood flow turns milky white because of circulating fat, but surprisingly it is healthy rather than damaging to the tissue.

A large group of special genes kick into action to help increase metabolism by a factor of forty. Two weeks later, after the food has been digested, all systems are back to normal, the heart remains slightly larger and even stronger than before.

The researchers report that this remarkable process could inspire new treatments for the heart condition cardiac fibrosis and a number of other modern human diseases that are miraculously able to do so by giant snakes. Pythons have mechanisms to protect the heart from things that could be harmful.

“Pythons can go months or even a year in the wild without eating and then eat something larger than their own body mass and nothing bad happens to them,” says Leslie Leinwand of the University of Colorado at Boulder, who has been studying pythons for nearly two decades.

“Most people use rats and mice as animal models to study disease and health, but there’s a lot to learn from animals like pythons that have evolved ways to survive in extreme environments,” Leinwand says.

Pythons have healthy heart development similar to that of elite athletes. The researchers found that well-fed snakes’ hearts enlarge, with bundles of specialized heart muscle called myofibrils softening dramatically and contracting with 50% more force.


They have different metabolites in their blood, genes that are turned on or off to change metabolism and the strength of contractions. More research is needed to identify the exact genes and metabolites that are at play. Several things may be driving pythons’ hearts to burn fat instead of sugar for fuel.

Original research

Claudia Crocini et al (2024). Postprandial cardiac hypertrophy is sustained by mechanics, epigenetic, and metabolic reprogramming in pythons. Proceedings of the National Academy of Sciences, 121 (36) e2322726121 DOI:10.1073/pnas.2322726121

Popular Posts

Purhepecha oak (Quercus purhepecha), new species of shrub oak endemic to the state of Michoacán, Mexico

NEWS - In Mexico, several Quercus shrubby species are taxonomically very problematic including 8 taxa with similar characteristics. Now researchers report the purhepecha oak ( Quercus purhepecha De Luna-Bonilla, S. Valencia & Coombes sp. nov.) as a new tomentose shrubby white oak species with a distribution only in the Cuitzeo basin in the Trans-Mexican Volcanic Belt (TMVB). Quercus Linnaeus (1753) subdivided into 2 subgenera and 8 sections of which section Quercus (white oaks) has the widest distribution in the Americas, Asia and Europe. This section is very diverse in Mexico and Central America with phylogenomic evidence indicating recent and accelerated speciation in these regions. The number of shrubby oak species in Mexico is still uncertain. De Luna-Bonilla of the Universidad Nacional Autónoma de México and colleagues found at least 3 taxa in the TMVB, specifically Quercus frutex Trelease (1924), Quercus microphylla Née (1801) and Quercus repanda Bonpland (1809). In 2016,...

Javan mocca or Javan slender caesar (Amanita javanica)

OPINION - Javan mocca or Javan slender caesar ( Amanita javanica ) is a mysterious fungus species and has been enigmatic since it was first reported by Boedijn in 1951 and after that no explanation or reporting of specimens is believed to be the same as expected. Boedijn (1951) described A. javanica which grew on Java island as having the characteristics covered in the Amanita genus. Corner and Bas in 1962 tried to describe Javan mocca and all species in Amanita based on specimens in Singapore. Over time some reports say that they have found A. javanica specimens in other Southeast Asia including also China, Japan, India and Nepal. But there is no definitive knowledge and many doubt whether the specimen is the same as described by Boedijn (1951). I was fortunate to have seen this species one afternoon and soon I took out a camera for some shots. In fact, I've only met this mushroom species once. Javan mocca is an endangered species and I have never seen in my experience in...

Tekijem (Cyperus cyperoides)

Tekijem ( Cyperus cyperoides ) is a plant species in Cyperaceae, annual grasses that grow in seasonal wetlands, open or shaded fields, swamps, ponds, rice fields, roadsides, open forests, secondary forests and shrubs at altitudes up to 1,800 m in the tropics. C. cyperoides has an upright, triangular shape, 20-75 cm tall from a very short rhizome and has no stolon. The lanceolate-shaped leaves are narrow and long, the tips are pointed, slippery, shiny, green and grow at the bottom and at the top of the stem. The terminal flower appears on the tip of the stem, cylindrical spiklet shaped and green. Each stem has two to seven flowers, each of which has a short or long stem that grows at the end of the stem together with the leaves. Tekijem grows solitary or in small groups at a distance. Propagating using vegetative and generative methods using seeds. At least three sub-species are Cyperus cyperoides cyperoides , Cyperus cyperoides flavus and Cyperus cyperoides pseudoflavus . Th...