Skip to main content

Homo neanderthalensis Thorin isolated more than 50,000 years before the species extinct

Homo neanderthalensis Thorin isolated more than 50,000 years before the species extinct

NEWS - Researchers report Homo neanderthalensis, found in a cave system in France’s Rhône Valley, represents a previously undescribed ancient lineage that diverged from other known Neanderthals about 100,000 years ago and remained genetically isolated for more than 50,000 years.

Genomic analysis suggests the bones of the Neanderthal dubbed “Thorin” lived in a small, isolated community. The new discovery could shed light on the still-mysterious reasons for the species’ extinction and suggests that late Neanderthals had a broader population structure than previously thought.

“There was only one genetically homogeneous Neanderthal population going extinct, but now we know that there were at least two populations at the time,” said Tharsika Vimala of the University of Copenhagen.

The Thorin population spent 50,000 years without exchanging genes with other Neanderthal populations. Over 50 millennia, two populations of Neanderthals, living about a ten-day walk from each other, lived side by side but ignored each other.

“This is unimaginable for sapiens. Neanderthals must have biologically understood our world very differently from us, sapiens,” says Thorin’s discoverer, Ludovic Slimak, of the Université Paul Sabatier in Toulouse.

Thorin’s fossils were first discovered in 2015 in the Grotte Mandrin, a well-studied cave system that was also home to early Homo sapiens, though not at the same time. Thorin’s location in cave sediments suggests he lived around 40,000-45,000 years ago as a “late Neanderthal”.

The team extracted DNA from teeth and jaws, then compared the complete genome sequence with previously sequenced Neanderthal genomes to determine its age and relationship to other Neanderthal communities.

Surprisingly, initial genome analysis showed Thorin was much older than archaeological estimates suggested, as his genome was very different from other late Neanderthals and much more similar to the genomes of Neanderthals who lived more than 100,000 years ago.

"We worked for seven years to figure out who was wrong, the archaeologists or the genomicists," Slimak said.

The researchers then analyzed isotopes from Thorin's bones and teeth to gain insight into the climate, as late Neanderthals lived during the Ice Age, while early Neanderthals enjoyed much warmer climates. The isotope analysis showed Thorin lived in a very cold climate, which would suggest he was a late Neanderthal.

"These genomes are the remains of some of the earliest Neanderthal populations in Europe. The lineage leading to Thorin would have separated from the lineage leading to other late Neanderthals around 105,000 years ago," said Martin Sikora of the University of Copenhagen.

Thorin's genome was most similar to that of the individual excavated in Gibraltar, and the researchers speculate that the Thorin population migrated to France from Gibraltar. This means there was an unknown Mediterranean Neanderthal population that stretched from the westernmost tip of Europe all the way to the Rhône Valley in France.

Knowing that a Neanderthal community was small and isolated could be key to understanding their extinction, because isolation is generally thought to be detrimental to a population’s fitness. Connectivity is a good thing for a population to be in contact with other populations.

“When you’re isolated for a long time, you limit the genetic variation you have, you lose the ability to adapt to climate change and pathogens, it also limits you socially and you don’t share knowledge or evolve as a population,” Vimala said.

However, to truly understand how the Neanderthal population was structured and why they went extinct, the researchers say more Neanderthal genomes need to be sequenced. Genomes from other regions during this same time period could help find other structured populations.

Original research

Slimak, Ludovic et al. (2024). Long genetic and social isolation in Neanderthals before their extinction. Cell Genomics, Volume 4, Issue 9, 100593, DOI:10.1016/j.xgen.2024.100593

Popular Posts

Javan mocca or Javan slender caesar (Amanita javanica)

OPINION - Javan mocca or Javan slender caesar ( Amanita javanica ) is a mysterious fungus species and has been enigmatic since it was first reported by Boedijn in 1951 and after that no explanation or reporting of specimens is believed to be the same as expected. Boedijn (1951) described A. javanica which grew on Java island as having the characteristics covered in the Amanita genus. Corner and Bas in 1962 tried to describe Javan mocca and all species in Amanita based on specimens in Singapore. Over time some reports say that they have found A. javanica specimens in other Southeast Asia including also China, Japan, India and Nepal. But there is no definitive knowledge and many doubt whether the specimen is the same as described by Boedijn (1951). I was fortunate to have seen this species one afternoon and soon I took out a camera for some shots. In fact, I've only met this mushroom species once. Javan mocca is an endangered species and I have never seen in my experience in...

Purhepecha oak (Quercus purhepecha), new species of shrub oak endemic to the state of Michoacán, Mexico

NEWS - In Mexico, several Quercus shrubby species are taxonomically very problematic including 8 taxa with similar characteristics. Now researchers report the purhepecha oak ( Quercus purhepecha De Luna-Bonilla, S. Valencia & Coombes sp. nov.) as a new tomentose shrubby white oak species with a distribution only in the Cuitzeo basin in the Trans-Mexican Volcanic Belt (TMVB). Quercus Linnaeus (1753) subdivided into 2 subgenera and 8 sections of which section Quercus (white oaks) has the widest distribution in the Americas, Asia and Europe. This section is very diverse in Mexico and Central America with phylogenomic evidence indicating recent and accelerated speciation in these regions. The number of shrubby oak species in Mexico is still uncertain. De Luna-Bonilla of the Universidad Nacional Autónoma de México and colleagues found at least 3 taxa in the TMVB, specifically Quercus frutex Trelease (1924), Quercus microphylla Née (1801) and Quercus repanda Bonpland (1809). In 2016,...

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...