Skip to main content

Researchers found plant biochemical mechanisms that have implications for billions dollars in biotechnology

University of Adelaide team have discovered a biochemical mechanism fundamental to plant life that could have far-reaching implications for the multibillion dollar biomedical, pharmaceutical, chemical and biotechnology industries.

Up to 80,000 fundamental-to-life enzymes working in plant or mammalian bodies, upon which almost all biochemical reactions depend. Enzymes carry out many chemical reactions, products of which can be used as building blocks or metabolites in a body, or they can serve as an energy source for every function in a body.

Dlium Researchers found plant biochemical mechanisms that have implications for billions dollars in biotechnology

Researchers have discovered a new enzyme catalytic mechanism, catalysis being a process which speeds up chemical reactions, which they say could impact on work in biofuels production, in food and materials processing, and in drug discovery.

"The foundation for this was laid down in our earlier work but, at that time, we could not explain some fundamental processes at work in plants as these occur at immense rates," said Maria Hrmova of the University of Adelaide's School of Agriculture, Food and Wine.

"The solution to this came up only recently, when we combined high-resolution X-ray crystallography, enzyme kinetics, mass spectrometry, nuclear magnetic resonance spectroscopy, and multi-scale 3-D molecular modelling tools to show those super-fast processes," Hrmova said.

Professor Hrmova said the discovery of the catalytic mechanism involved specialists in plant and molecular biology, biochemistry, biophysics, bioinformatics and computer science from seven countries: Australia, France, Thailand, Spain, Chile, Slovak Republic and China.

"Using computer simulations, we discovered a remarkable phenomenon during initial and final catalytic events near the surface of the plant glucose-processing enzyme. The enzyme formed a cavity which allowed the trapped glucose to escape to allow for the next round of catalysis," said Hrmova.

"Now that we can simulate these nanoscale movements we have opened the door to new knowledge on enzyme dynamics that was inaccessible before. These discoveries are made once in a generation."

"Being able to describe these minute and ultra-fast processes—unable to be captured via usual experimental techniques—means we can now work to improve enzyme catalytic rates, stability and product inhibition,"

"This will have significance in biotechnologies to develop or manufacture products through novel forms of bioengineered enzymes that could be also used outside of biological systems," Hrmova said.

Journal : Victor A. Streltsov et al. Discovery of processive catalysis by an exo-hydrolase with a pocket-shaped active site, Nature Communications, 20 May 2019, DOI:10.1038/s41467-019-09691-z

Popular Posts

Six new species forming the Sumbana species group in genus Nemophora Hoffmannsegg 1798 from Indonesia

NEWS - Sumbawa longhorn ( Nemophora sumbana Kozlov, sp. nov.), Timor longhorn ( Nemophora timorella Kozlov, sp. nov.), shining shade longhorn ( Nemophora umbronitidella Kozlov, sp. nov.), Wegner longhorn ( Nemophora wegneri Kozlov, sp. nov.), long brush longhorn ( Nemophora longipeniculella Kozlov, sp. nov.), and short brush longhorn ( Nemophora brevipeniculella Kozlov, sp. nov.) from the Lesser Sunda Islands in Indonesia. The Lesser Sunda Islands consist of two parallel, linear oceanic island chains, including Bali, Lombok, Sumbawa, Flores, Sumba, Sawu, Timor, Alor, and Tanimbar. The oldest of these islands have been continuously occurring for 10–12 million years. This long period of isolation has allowed significant in situ diversification, making the Lesser Sundas home to many endemic species. This island chain may act as a two-way filter for organisms migrating between the world's two great biogeographic regions, Asia and Australia-Papua. The recognition of a striking cli...

Golden tortoise beetle (Charidotella sexpunctata)

Kepik emas or golden tortoise beetle ( Charidotella sexpunctata ) is a type of leaf beetle species in the Chrysomelidae family, up to 14mm long and bright golden in glass discs. These insects usually live on Ipomoea carnea trees that grow in environments close to water. C. sexpunctata takes refuge in a transparent disc consisting of three parts with four signs as fals legs, a pair of antennas and six legs. This beetle is able to change color if it feels threatened by flowing liquid between the cuticles and the glittering gold color turns into blood red or worn brown. Kepik emas usually lay eggs up to 20 items, white and attached to the branches or on the underside of the leaves. Yellowish or reddish brown larvae will appear from eggs that hatch within 5 to 10 days. Adults and larvae eat leaves which cause large holes. Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Coleoptera Family: Chrysomelidae Subfamily: Cassidinae Tribe: Aspidimorphini Genus: Aspidimor...

Bitter vine (Mikania micrantha)

Sembung rambat or bitter vine ( Mikania micrantha ) is a plant species in Asteraceae, crawling or wrapped around trees, perennial that grows up to 27 mm per day in tropical climates, branched stems where heart-shaped or triangular leaves are arranged in pairs and a plant can cover more than 25 square meters in a few months. M. micrantha has square-shaped stems or longitudinal bones, light green, many branches and has fine hairs. The stems have segments for lengths of 75-215 mm, each segment has a pair of leaves, new shoots and flowers. New roots grow when the segments come in contact with the soil. The leaves are in pairs and facing each other. Strands do not have hair, heart-shaped or triangular with jagged edges, length 30-125 mm, width 15-60 mm. Petiole is 1-6 cm long and has fine hairs. The flower panicle grows from the armpit of the leaf and the tip of the stem, having 3-15 mm long stems. Each flower head has 4 minor flowers. The crown is greenish-white, tubular and measures ...